Using TI-Innovator Hub under Python

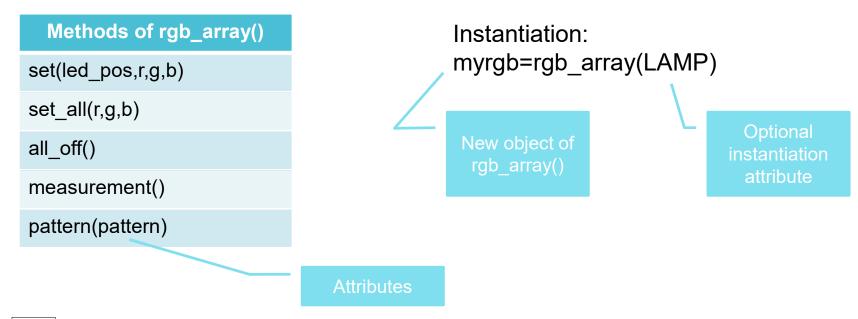
Veit Berger, Hans-Martin Hilbig

Agenda

- Concepts of Object-Oriented Programming from an educator's perspective
- Adding new sensors under Python
- Using "time" functions on TI-Nspire CXII and TI-Nspire Desktop

Before you go:

- Please give us detailed feedback about what you liked / disliked
- Please give us detailed feedback about where you need help!


TI-Nspire Python from the educator's perspective

Veit Berger, Teacher Computer Science & Physics, Geschwister-Scholl-Gymnasium Löbau:

- MicroPython, as implemented in the TI-Nspire-CXII, satisfies all needs of an Object-Oriented Computer Science education
- 2. Highly abstract Object Libraries will enable students to create attractive applications based on simple code

Ref 1: Object-Oriented Programming (1)

Example: The rgb_array() class (as part of the ti_hub module)

Teachers Teaching with Technology™ VB/HMH 10/15/20

Ref 1: Object-Oriented Programming (2)

Extending of what's available

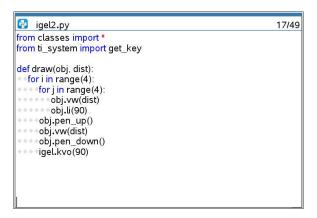
Inheritance	Encapsulation	Polymorphism
Adding a new class with inheritance of methods and properties from the parent class	Internal class variables are not accessible from outside the object	At runtime it is decided which method of the same name of a class hierarchy is executed
classes.py from ti_hub_import_rgb_array from time_import_sleep class_child_my_rgb_array(rgb_array): definit(self, color): super()init() self.state = 0 self.color = color def on(self, t): if self.color == 'red': super().set_all(255, 0, 0) elif self.color == 'green': super().set_all(0, 255, 0) elif self.color == blue': super().set self(0, 0, 255)	classes.py elif self.color =='orsen':	class grandchild_my_alarm_rgb(child_my_rgb_array): definit(felf). super()inft('red') self.dt=0.0. def on(self, t):

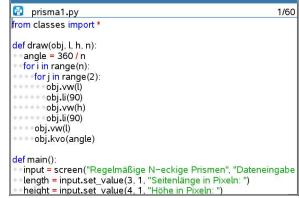
Teachers Teaching with Technology™ VB/HMH 10/15/20

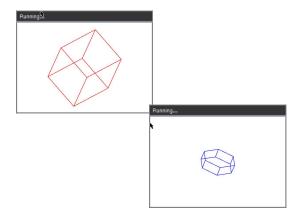
Ref 2: Highly abstract Object Libraries (1)

"Space Hedgehog" (Raumigel), a highly abstract 3D-graphics library

Allows creation of 3D objects in a coordinate-free Graphics Space, similar to the popular 2D Python turtlegraphics library

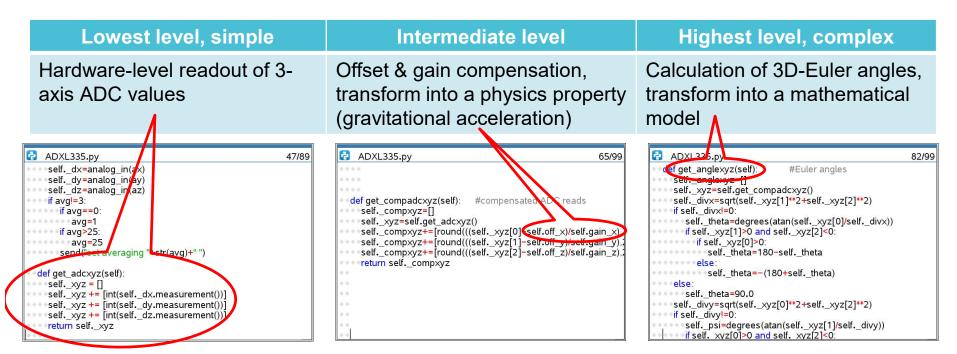

- First created* in LOGO by Löthe, Wölpert, Wolpert;
 Raumigel Einführung, Anwendungen, Implementation;
 Informatik und Datenverarbeitung in der Schule,
 Materialien und Berichte Nr. 7, Pädagogische Hochschule
 Ludwigsburg, 1985
- Migrated to Pascal by Veit Berger, 1995
- Migrated to Delphi by Veit Berger, 2000
- Migrated to TI-Nspire MicroPython by Veit Berger, 2020




Ref 2: Highly abstract Object Libraries (2)

Create compact code, based on a highly abstract 3D-graphics library

Coordinate-free graphics	Train imagination in 3D	Advanced applications
Grades 8-9: experiment – reflect – learn	Grades 9-10: Learn Math & Geometry	Grades 10+: Applied trigonometry




Ref 2: Highly abstract Object Libraries (3)

Adding a new accelerometer sensor library (ADXL335)

The TI-Nspire Python 'time' module (1)

Legacy time functions	Ticks-counter based time functions	Real-Time-Clock(RTC) based time functions
wait()	sleep()	clock()
hub_time()	sleep_ms()	time()
	sleep_us()	localtime()
	ticks_cpu()	
	ticks_ms()	
	ticks_us()	
	ticks_diff()	
	ticks_add()	

The TI-Nspire Python 'time' module (2)

Differences between Handheld and Desktop:

Function	Handheld	Desktop	Ro	llover
			Handheld	Desktop
ticks_cpu()	30-bit integer,10ms LSB	62-bit integer, 100ns LSB	124 days*	>>years***
ticks_ms()	30-bit integer,10ms LSB	62-bit integer, 1ms LSB	12 days*	>>years***
ticks_us()	30-bit integer,10ms LSB	62-bit integer, 1us LSB	17 mins*	>>years***
clock()	Float, 10ms resolution	Float, 1ms resolution	Note *	>>years***
time()	Integer, 1s resolution	Float, 10us resolution	Note **	N/A
localtime()	Tuple, synced from Desktop	Tuple, synced from Server	Note **	N/A

Notes:

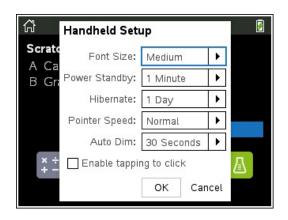
* counters are paused when Handheld is in Standby, ** data is cleared when Handheld is in Hibernate, *** counters appear to be random after Desktop App started, so Rollover might happen sooner!

Using 'time' for benchmarks

```
benchmark.py 15/15

from time import *

tloop=i=0
t0=ticks_ms() #store current timer value


while ticks_diff(ticks_ms(),t0)<1000: #run code in a loop for 1sec
*t1=ticks_ms() #this is optional
*i+=1
*print("Loop: "i," time: ",tloop) #code to benchmark goes here
*tloop=ticks_diff(ticks_ms(),t1) # this is optional

print("total execution time [ms]: ",ticks_diff(ticks_ms(),t0))
print("total # of loops: ",i)
print("time in loop: [ms] ",tloop)
```

- Use ticks_ms() to measure code execution
- Place your code to benchmark in a 1 second loop
- Optionally, measure execution time of each loop
- Measure execution time right after loop
- Use ticks_diff(b,a) instead of (b-a), to avoid rollover error
- Start small, to identify the time-consuming parts of your code
- Be careful when you compare benchmarks across platforms:
 - CPU speed and OS (Win10/MacOS) of your PC/Notebook matters
 - Apps (VPN, Browser, Excel, etc.) open in parallel eat CPU time
 - Handheld performs differently to PC

TI-Nspire-CXII Standby & Hibernate

	Standby	Hibernate
ticks_counters	Paused	Reset
Time,localtime	Continued	Cleared
Python Shell	Saved	Reinitialized

- Make sure all Handhelds of the classroom use the same settings
- Synchronize Real Time Clock of Handheld after Hibernate, by connecting Handheld to Nspire Desktop
- To avoid loss of RTC data, set Hibernate to <never>, at the expense of battery lifetime

The TI-Nspire Python 'time' module summary

- Use of legacy functions (hub_time(),wait()) is not recommended
- Time functions behave differently on Handheld vs. Desktop
- Handheld uses 30-bit wide, Desktop uses 62-bit wide counters
- ticks_ms() works best for TI-Nspire Python code benchmarking
- Use ticks_diff() when benchmarking code, to avoid rollover errors
- ticks_cpu() provides highest resolution
- Maximum time resolution of Handheld is 10 milliseconds
- Maximum time resolution of Desktop is 100 nanoseconds
- After Hibernate mode, all handheld timers are reset!
- Regularly plug Handheld to Desktop to update time(),localtime()!

Helpful links

- TI Education Technology Homepage, Documentation <u>https://education.ti.com/</u>
 https://education.ti.com/en/guidebook/search/ti-nspire-cx
- T³ Europe Webinars live and on-demand, Documentation, Material Database https://www.t3europe.eu/en/t3-europe/webinars/on-demand https://ti-unterrichtsmaterialien.net/materialien
- MicroPython documentation <u>https://docs.micropython.org/en/latest/index.html</u>
- MicroPython Online-reference with tutorials
 https://www.programiz.com/python-programming/first-program
- Gymnasium Löbau computer science homepage https://gsg-loebau.de/fachbereiche/naturwissenschaften/informatik
- ... or simply shoot us an email with questions, suggestions, feedback to: <u>hm-hilbig@web.de</u> <u>v.berger@gmx.de</u>

