

Guida del Calcolatrice scientifica TI-30X Pro MathPrint™

Per sapere di più sulle tecnologie TI, consultare la guida online all'indirizzo education.ti.com/eguide.

Informazioni importanti

Texas Instruments non riconosce alcuna garanzia, esplicita o implicita, ivi comprese, ma non solo, qualsivoglia garanzia implicita di commerciabilità e idoneità per un particolare scopo relativamente ai programmi o ai materiali di riferimento. Tali materiali sono pertanto resi disponibili "così come sono". In nessun caso Texas Instruments potrà essere ritenuta responsabile nei confronti di chiunque di danni speciali, collaterali, incidentali o conseguenti, connessi o derivanti dall'acquisto o dall'utilizzo dei suddetti materiali, e l'unica ed esclusiva responsabilità risarcitoria di Texas Instruments, a prescindere dalla forma di azione intrapresa, non potrà essere superiore all'importo corrispondente al prezzo di acquisto di questo prodotto. Inoltre, Texas Instruments non potrà essere ritenuta responsabile di qualsivoglia reclamo riguardante l'utilizzo di tali materiali da parte di altri.

MathPrint, APD, Automatic Power Down ed EOS sono marchi registrati di Texas Instruments Incorporated.

Copyright © 2025 Texas Instruments Incorporated

I prodotti reali possono differire leggermente dalle immagini pubblicate.

Sommario

Introduzione	1
Accensione e spegnimento della calcolatrice	1
Contrasto del display	
Schermata iniziale	1
Funzioni secondarie	
Modalità	3
Tasti multifunzione	5
Menu	5
Esempi	6
Scorrimento di espressioni e cronologia	6
Alterna risultato	7
Ultimo risultato	7
Ordine delle operazioni	8
Cancellazione e correzione	
Memoria e variabili memorizzate	
Funzioni matematiche	14
Frazioni	14
Notazione scientifica [EE]	16
Potenze, radici e reciproci	17
Pi (simbolo Pi)	
Math	
Funzioni numeriche	
Angoli	
Funzioni trigonometriche	
Funzioni iperboliche	
Funzioni logaritmiche ed esponenziali	27
Statistica, regressioni e distribuzioni	
Probabilità	
Strumenti matematici	42
Operazioni memorizzate	
Editor di dati e formule di lista	
Tabella della funzione	47
Calcolo di espressioni	
Costanti	
Numeri complessi	53
Informazioni di riferimento	
Errori e messaggi	
Informazioni sulle pile	60

In caso di difficoltà	61
Informazioni di carattere generale	

Introduzione

Questa sezione contiene informazioni sulle funzioni basilari della calcolatrice.

Accensione e spegnimento della calcolatrice

Il tasto on permette di accendere la calcolatrice. Il tasto 2nd off permette di spegnerla. Allo spegnimento, il display viene cancellato, mentre vengono conservati la cronologia, le impostazioni e il contenuto della memoria.

La funzione di spegnimento automatico APD[™] (Automatic Power Down[™]) spegne automaticamente la calcolatrice se non viene premuto alcun tasto per circa 3 minuti. Premere on dopo l'intervento della funzione APD[™]. I dati del display, le operazioni in corso, le impostazioni e il contenuto della memoria vengono conservati.

Contrasto del display

La luminosità e il contrasto del display possono dipendere dall'illuminazione della stanza, dalla carica della batteria e dall'angolo di osservazione.

Per regolare il contrasto:

- 1. Premere e rilasciare il tasto 2nd.
- 2. Premere [••] (per scurire la schermata) oppure [••] (per schiarire la schermata).

Nota: In tal modo si regola il contrasto un livello per volta. Ripetere i passaggi 1 e 2 secondo necessità.

Schermata iniziale

Nella schermata iniziale è possibile immettere espressioni e funzioni matematiche insieme ad altre istruzioni. I risultati vengono visualizzati nella schermata iniziale.

La TI-30X Pro MathPrint[™] schermata può visualizzare fino a quattro righe con un massimo di 16 caratteri per riga. Per voci ed espressioni più lunghe dell'area visibile della schermata è possibile scorrere a sinistra e a destra (④ e ④) per visualizzare l'intera voce o espressione.

In modalità MathPrintTM, è possibile immettere fino a quattro livelli di funzioni ed espressioni annidate consecutive, che comprendono frazioni, radici quadrate, esponenti con ^, $\sqrt[3]{y}$, ex e 10x.

Quando si calcola un'immissione nella schermata iniziale, il risultato, a seconda dello spazio, viene visualizzato direttamente a destra dell'immissione o sul lato destro della riga successiva.

Nella schermata possono essere visualizzati speciali indicatori e cursori per fornire ulteriori informazioni riguardo alle funzioni o ai risultati.

Indicatore	Definizione
2ND	Funzione secondaria.

Indicatore	Definizione
FIX	Impostazione virgola fissa (vedere il paragrafo Mode).
SCI, ENG	Notazione scientifica o tecnica. (vedere il paragrafo Mode).
DEG, RAD, GRAD	Modalità dell'angolo (gradi, radianti o gradi centesimali). (vedere il paragrafo Mode).
L1, L2, L3	Viene visualizzato sopra gli elenchi nell'editor di dati.
Н, В, О	Indica la modalità della base numerica: esadecimale, binaria o ottale. Per la modalità predefinita, ossia in base decimale, non viene visualizzato nessun indicatore.
X	La calcolatrice sta eseguendo un'operazione. Utilizzare on per interrompere il calcolo.
▲ ▼	Nella memoria è archiviata un'immissione prima e/o dopo l'area visibile della schermata. Premere ⊙ e ⊙ per scorrere la visualizzazione.
•	Indica che il tasto multifunzione è attivo.
	Cursore normale. Indica la posizione in cui verrà visualizzato il prossimo elemento che verrà digitato. Sostituisce qualsiasi carattere corrente.
*	Cursore limite dell'immissione. Non è possibile immettere ulteriori caratteri.
_	Cursore di inserimento. Viene inserito un carattere davanti alla posizione del cursore.
	Riquadro segnaposto per modello di MathPrint™ vuoto. Utilizzare i tasti freccia per spostarsi nel riquadro.
	Cursore MathPrint [™] . Continuare a immettere nel modello MathPrint [™] corrente oppure premere per uscire dal modello.

Funzioni secondarie

2nd

La maggior parte dei tasti possono svolgere più di una funzione. La funzione principale è indicata sul tasto, mentre la funzione secondaria è visualizzata sopra di esso. Premere 2nd per attivare la funzione secondaria di un determinato tasto. Si noti che sulla schermata compare l'indicatore **2ND**. Per annullarla prima di premere il tasto successivo, premere nuovamente 2nd. Per esempio, 2nd [r] **25** enter calcola la radice quadrata di 25 e restituisce il risultato, 5.

Modalità

mode

Utilizzare il tasto mode per scegliere le modalità. Premere \odot \odot 0 per scegliere una modalità e enter per selezionarla. Premere clear o 2nd [quit] per tornare alla schermata iniziale ed eseguire i propri calcoli utilizzando le impostazioni di modalità scelte.

Le impostazioni predefinite sono evidenziate in queste schermate di esempio.

MATHERINT CLASSIC

DEGREE RADIAN GRADIAN - Imposta la modalità di espressione degli angoli in gradi, radianti o gradi centesimali.

NORMAL SCI ENG - Imposta la modalità di notazione numerica. Le modalità di notazione numerica incidono soltanto sulla visualizzazione dei risultati e non sulla precisione dei valori memorizzati nell'unità che rimangono massimali.

Con la modalità **NORMAL** i risultati vengono visualizzati con cifre a sinistra e a destra del separatore decimale, come in 123456.78.

Con la notazione scientifica **SCI**, i numeri vengono espressi con una cifra a sinistra del separatore decimale e l'opportuna potenza di 10, come in 1.2345678E5, che equivale esattamente al valore (1.2345678×10⁵) che comprende le parentesi per l'ordine corretto di esecuzione dell'operazione.

Con la notazione tecnica **ENG**, i risultati vengono espressi da un numero da 1 a 999 moltiplicato per 10 elevato a una potenza intera. La potenza intera è sempre un multiplo di 3.

Nota: EE è un tasto di scelta rapida per immettere un numero con formato in notazione scientifica. Il risultato viene visualizzato nel formato della notazione numerica scelto nel menu delle modalità.

FLOAT 0123456789 - Imposta la modalità di notazione decimale.

La modalità **FLOAT** (separatore decimale mobile) mostra fino a 10 cifre, oltre al segno e al separatore decimale.

0 1 2 3 4 5 6 7 8 9 (separatore decimale fisso) specifica il numero di cifre (da 0 a 9) da visualizzare a destra del separatore decimale.

REAL a+bi $r \angle \theta$ - Imposta il formato dei risultati con numeri complessi.

REAL risultati reali

a+bi risultati nel formato in rappresentazione cartesiana

 $\mathbf{r} \angle \boldsymbol{\theta}$ risultati nel formato in rappresentazione polare

DEC HEX BIN OCT - Imposta la base numerica utilizzata per i calcoli.

DEC decimale

HEX esadecimale (per immettere le cifre esadecimali da A a F, utilizzare 2nd [A], 2nd [B] così via).

BIN binaria

OCT ottale

MATHPRINT CLASSIC

La modalità **MATHPRINT** visualizza la maggior parte delle immissioni e dei risultati su più righe.

La modalità CLASSIC visualizza immissioni e risultati su un'unica riga.

Esempi delle modalità MathPrint™ e Classic

Modalità MathPrint™	Modalità Classic
Esempio di radice quadrata	Esempio di radice quadrata
√2 √2* 1.414213562	√(2). 1.414213562
Esempio di radice cubica	Esempio di radice cubica
³ √64 ⁴	3×√64 4

Tasti multifunzione

Un tasto multifunzione, quando viene premuto, consente di scorrere ciclicamente tra più funzioni. Premere () per interrompere la multifunzionalità.

Per esempio, il tasto an contiene le funzioni trigonometriche sin e sin⁻¹ come pure le funzioni iperboliche sinh e sinh⁻¹. Premere ripetutamente il tasto per visualizzare la funzione che si desidera immettere.

l tasti multifunzione includono $x_{z_{e,e}}^{z_{e,e}}$, x_{e} . Opportune sezioni della presente guida descrivono come si utilizzano i tasti.

Menu

I menu forniscono accesso a numerose funzioni della calcolatrice. Alcuni tasti menu, come [2nd] [recall], visualizzano menu singoli. Altri, come [math], visualizzano menu multipli.

Premere O e O per scorrere e selezionare una voce di menu o premere il numero corrispondente accanto alla voce. Per tornare alla schermata precedente senza selezionare la voce, premere clear. Per uscire da un menu e tornare alla schermata iniziale, premere 2nd [quit].

[2nd] [recall] (tasto con un singolo menu):

RECALL VAR

1:x = 0 2:y = 0 3:z = 0 4:t = 0 5:a = 0 6:b = 0 7:c = 08:d = 0

math (tasto con più menu):

MATH	NUM	DMS	R⁴⋫P
1:▶n/d∢▶Un/d	1:abs(1:°	1:P ▶ Rx(
2:lcm(2:round(2:'	2:P ▶ Ry(
3:gcd(3:iPart(3:″	3:R ▶ Pr(
4:▶Pfactor	4:fPart(4:r	4:R ▶ Pθ(
5:sum(5:int(5:g	
6:prod(6:min(6:▶DMS	
	7:max(
	8:mod(

Esempi

Alcune sezioni sono seguite da istruzioni per esempi di pressione dei tasti che dimostrano le TI-30X Pro MathPrint™ funzioni.

Nota:

- Gli esempi presuppongono tutte le impostazioni predefinite, come mostrato nella sezione Modalità, salvo indicato diversamente nell'esempio.
- Utilizzare clear per cancellare la schermata iniziale secondo necessità.
- Alcuni elementi della schermata possono essere diversi da quelli mostrati nel presente documento.
- Poiché le procedure guidate le conservano in memoria, alcune pressioni dei tasti possono essere diverse.

Scorrimento di espressioni e cronologia

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Premere ④ o ④ per spostare il cursore all'interno di un'espressione che si sta immettendo o modificando. Premere 2nd ④ o 2nd ④ per spostare il cursore direttamente dall'inizio o alla fine dell'espressione.

Da un'espressione o modifica, sposta il cursore nella cronologia. Premendo enter da un'immissione o da un risultato in cronologia si incollerà l'espressione nuovamente nella posizione del cursore sulla riga di modifica.

Premere 2nd dal denominatore di una frazione nella modifica delle espressioni per spostare il cursore nella cronologia. Premendo enter da un'immissione o da un risultato nella cronologia si incollerà l'espressione al denominatore.

[rr] ⊙ ⊙ enter [enter]	$\sqrt[7^2-4(3)(1)]{7^2-4(3)(1)}$	37 1 <u>37</u>
	$ \begin{array}{r} 7^{2}-4(3)(1) \\ \sqrt{7^{2}}-4(3)(1) \\ \sqrt{37} & 6.0827 \end{array} $	37 137 6253

Alterna risultato

∢ ► ≈

Premere il tasto $\textcircled{P}{z}$ per alternare la visualizzazione del risultato (quando possibile) tra frazionario e decimale, radice quadrata esatta e decimale e pi greco esatto e approssimato.

Esempio

Alterna risultato	2nd] [√-] 8 [enter]	18	212
	(• z)	<u>18</u> 2√2*	^{DEG} 2√2 2.828427125

Nota: $\bullet z$ è disponibile anche per alternare i formati numerici dei valori nelle celle nelle tabelle delle funzioni e nell'editor di dati. Editor come quelli in Matrice, Vettore e Risolutore di sistemi visualizzano i valori delle celle in formato alternato.

Ultimo risultato

2nd [answer]

L'ultima immissione effettuata nella schermata iniziale è memorizzata nella variabile **ans**. Tale variabile viene conservata in memoria, anche dopo che la calcolatrice viene spenta. Per richiamare il valore di **ans**:

- Premere 2nd [answer] (ans viene visualizzato sulla schermata) oppure

ans	3 × 3 enter	3*3	DEG	Ĵ.
	× 3 enter	3*3 ans*3	DEG	9 27
	3 [2nd] [°v-] [2nd] [answer] [enter]	3*3 ans*3 ∛ans	DEG	- 9 27 3

Nota: La variabile ans viene memorizzata e incollata con la massima precisione che è di 13 cifre.

Ordine delle operazioni

La TI-30X Pro MathPrint[™] calcolatrice utilizza EOS[™] (Equation Operating System) per il calcolo delle espressioni. All'interno di un livello di priorità, EOS[™] calcola le funzioni da sinistra a destra e nel seguente ordine.

1°	Espressioni tra parentesi.
2°	Funzioni che necessitano di una) e precedono l'argomento, come sin, log e tutte le voci di menu R↔ P.
3°	Funzioni che vengono immesse dopo l'argomento, come x ² e modificatori di unità di misura degli angoli.
4°	Elevamento a potenza (^) e radici (×√). Nota: In modalità Classic, l'elevamento a potenza mediante il tasto 🐨 viene calcolato da sinistra a destra. L'espressione 2^3^2 viene calcolata come (2^3)^2, con un risultato di 64. 2^3^2 64 In modalità MathPrint [™] , l'elevamento a potenza mediante il tasto 🐨 viene calcolato da destra a sinistra. L'espressione 2^3^2 viene calcolata come 2^(3^2), con un risultato di 512.

	2 ³² 512
	La calcolatrice calcola le espressioni immesse con x^2 e $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ da sinistra a destra in entrambe le modalità Classic e MathPrint ^M . La pressione dei tasti 3 x^2 x^2 viene calcolata come $(3^2)^2 = 81$.
5°	Segno negativo (-).
6°	Frazioni.
7°	Disposizioni semplici (nPr) e combinazioni (nCr).
8°	Moltiplicazioni, moltiplicazioni implicite, divisioni e indicatori di angolo∠.
9°	Addizioni e sottrazioni.
10°	Operatori logici and, nand.
11°	Operatori logici or, xor, xnor.
12°	Conversioni come ▶n/d4▶Un/d, F4▶D, ▶DMS .
13°	sto→
14°	enter calcola l'espressione immessa.

Nota: Gli operatori di fine espressione e le conversioni di base n, come >Bin, le conversioni di angoli >DMS, >Pfactor e le conversioni di numeri complessi >Polar e >Rectangle sono validi solo nella schermata iniziale. Sono ignorati nelle procedure guidate, nella visualizzazione delle tabelle delle funzioni e nelle funzioni dell'editor di dati dove il risultato dell'espressione, se valido, viene visualizzato senza conversione. Anche editor come in Matrice, Vettore e Risolutore di sistemi ignoreranno questi operatori di fine espressione nella riga di modifica.

Nota: Utilizzare le parentesi per indicare chiaramente l'ordine delle operazioni previsto per l'espressione immessa. Se necessario, le parentesi possono essere utilizzate per ignorare l'ordine delle operazioni seguito dagli algoritmi nella calcolatrice. Se il risultato non è come previsto, controllare in che modo è stata immessa l'espressione e aggiungere delle parentesi laddove necessario.

+ x ÷ -	60 + 5 × - 12 enter	60+5* ⁻ 12 [™]	ò
(-)	1 (+) () 8 (+) 12 enter	1+-8+12	Š

√ e +	[2nd] [√] 9 + 16 enter	√9+16	DEG 1
()	4 🗙 (2 + 3) enter	4*(2+3)	^{DEG} 20
() e +	4 (2 + 3) enter	4(2+3)	^{DEG} 20
^ e √	2nd [√] 3 <u>x</u> ^a 2 () + 4 <u>x</u> ^a 2 enter	$\sqrt{3^2+4^2}$	DEG ••
()e-	((-) 3)) x ² enter () 3 x ² enter	(-3) ² -3 ²	DEG 9 -9

Cancellazione e correzione

[2nd] [quit]	Riporta il cursore nella schermata iniziale. Chiude rapidamente le seguenti applicazioni: Calcolo di espressioni, Imposta operazione, Tabella della funzione, Editor di dati, Calcoli statistici, Distribuzioni, Vettore, Matrice, Risolutore numerico, Risolutore polinomiale e Risolutore di sistemi.
clear	Cancella un messaggio di errore.
	Cancella i caratteri nella riga di immissione.
delete	Elimina il carattere in corrispondenza del cursore.
	Quando il cursore è alla fine di un'espressione, torna indietro di uno spazio ed elimina.
2nd [insert]	Inserisce un carattere in corrispondenza del cursore.
2nd [clear var] 1	Cancella le variabili x, y, z, t, a, b, c e d ripristinandone il valore predefinito 0.
	Ogni variabile statistica calcolata non sarà più disponibile nel menu Stat Vars. Ricalcolare le funzioni statistiche secondo necessità.

2nd [reset]	2	Resetta la calcolatrice.
		Ripristina la calcolatrice alle impostazioni predefinite; cancella le variabili in memoria, le operazioni in attesa, tutte le immissioni nella cronologia e i dati statistici; cancella qualsiasi operazione memorizzata e ans .

Memoria e variabili memorizzate

 x_{abcd}^{yzt} sto+2nd[recall]2nd[clear var]

La TI-30X Pro MathPrint™ calcolatrice dispone di 8 variabili di memoria: x, y, z, t, a, b, c, e d. È possibile conservare come variabili di memoria i seguenti tipi di dati:

- numeri reali o complessi
- risultati di espressioni
- calcoli provenienti da varie applicazioni come Distribuzioni
- valori delle celle dell'editor di dati (memorizzati dalla riga di modifica)

Le funzioni della calcolatrice che utilizzano variabili utilizzeranno i valori memorizzati.

sto -> permette di memorizzare valori nelle variabili. Premere sto -> per memorizzare una variabile e premere $\frac{x_{sted}^{xet}}{x_{sted}^{xet}}$ per selezionare la variabile da memorizzare. Premere enter per memorizzare il valore nella variabile selezionata. Se la variabile contiene già un valore, tale valore viene sostituito dal nuovo valore.

 $\frac{x_{zec}^{yz}}{x_{dcd}^{yz}}$ è un tasto multifunzione che permette di scorrere ciclicamente tra i nomi di variabile **x**, **y**, **z**, **t**, **a**, **b**, **c**, e **d**. È possibile utilizzare $\frac{x_{dcd}^{yz}}{x_{dcd}^{yz}}$ per richiamare i valori memorizzati per queste variabili. Nell'immissione corrente viene inserito il nome della variabile, ma per calcolare l'espressione viene utilizzato il valore assegnato alla variabile. Per immettere due o più variabili di seguito, premere dopo ciascuna di esse.

[2nd] [recall] richiama i valori delle variabili. Premere [2nd] [recall] per visualizzare un menu di variabili e rispettivi valori memorizzati. Selezionare la variabile che si intende richiamare e premere [enter]. Il valore assegnato alla variabile viene inserito nell'immissione corrente e utilizzato per calcolare l'espressione.

[2nd] [clear var] cancella i valori delle variabili. Premere [2nd] [clear var] e selezionare 1:Yes per cancellare tutti i valori delle variabili. Ogni variabile statistica calcolata non sarà più disponibile nel menu Stat Vars. Ricalcolare le funzioni statistiche secondo necessità.

Inizia con la [2nd] [quit] [clear] schermata vuota	DEG
--	-----

Cancella variabile	[2nd] [clear var] 1 (Seleziona Yes)	CLEAR VAR 1:Yes 2:No	
Memorizza	15 sto $\rightarrow x_{abcd}^{yel}$	15→ <i>x</i> ^{DEG}	*
	enter	15→x 	15
Richiama	[2nd] [recall]	RECALL VAR 1: x=15 2: y=0 3↓z=0	
	enter x^2 enter	15→x 15 ²	15 225
	$\text{sto} \rightarrow \begin{bmatrix} x_{abcd}^{jzt} \\ x_{abcd}^{zzt} \end{bmatrix} \begin{bmatrix} x_{abcd}^{zzt} \end{bmatrix}$	15→x 15² ans→y	15 225
	enter	15→x 15 ² ans→y	15 225 225
	$\begin{bmatrix} x_{abcd}^{zzt} & x_{abcd}^{zzt} \end{bmatrix}$	בסדג 15 ² ans≁y y	13 225 225
	enter 🔆 4 enter	15* ans→y y ans∕4	225 225 225 56,25

Problema

In una cava di ghiaia sono stati aperti due nuovi scavi. Il primo misura 350 metri per 560 metri e il secondo misura 340 metri per 610 metri. Qual è il volume di ghiaia che è

necessario che la compagnia estragga da ciascuno scavo per giungere a una profondità di 150 metri? E per giungere a 210 metri? Visualizzare i risultati in notazione tecnica.

mode \textcircled{O} () enter Clear 350 \boxtimes 560 sto+ x_{abcd}^{yet} enter	350*560→x 196e3
340 \times 610 sto+ x_{abcd}^{yet} x_{abcd}^{yet} enter	350*560→x 196Ē3 340*610→y 207.4E3
[clear] 150 ⊠ [ncall]	RECALLEVAR 1:x=196e3 2:y=207.4e3 3↓z=0e0
enter enter	150*196000 29.4E6
[clear] 210 ⊠ [recall] [enter] [enter]	210*196000 41.16E6

Per il primo scavo, per giungere a una profondità di 150 metri è necessario che la compagnia estragga 29,4 milioni di metri cubi e che, per giungere a una profondità di 210 metri, estragga 41,16 milioni di metri cubi.

Clear 150 \times x_{abcd}^{yzt} x_{abcd}^{yzt} enter	150*у	and Deg 31.11e6
210 \times $\overline{x_{abcd}^{yzt}}$ $\overline{x_{abcd}^{yzt}}$ enter	150*у 210*у	31.11e6 43.554e6

Per il secondo scavo, per giungere a una profondità di 150 metri è necessario che la compagnia estragga 31,11 milioni di metri cubi e che, per giungere a una profondità di 210 metri, estragga 43,554 milioni di metri cubi.

Funzioni matematiche

Questa sezione contiene informazioni sull'uso delle funzioni matematiche della calcolatrice come quelle trigonometriche, statistiche e probabilistiche.

Frazioni

 $\begin{array}{c} \hline \\ \hline \\ \end{array} \qquad \begin{array}{c} 2nd \begin{bmatrix} \Box \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} math \end{array} 1 \qquad \begin{array}{c} 2nd \begin{bmatrix} f \checkmark \flat d \end{bmatrix} \end{array}$

Le frazioni con $\begin{bmatrix} n \\ n \end{bmatrix}$ possono comprendere numeri reali e complessi, tasti operatori ([+], $[\times]$, etc.) e la maggior parte dei tasti funzione (x^2 , 2nd [%], ecc.).

In modalità Classic o nelle classiche immissioni in modalità MathPrint[™], la barra di frazione 🗄 viene visualizzata nella riga come una barra spessa, per esempio 8, 9. Utilizzare le parentesi per indicare chiaramente il calcolo aritmetico previsto. Sebbene varranno le regole di Ordine delle operazioni, si ha il controllo del modo in cui viene calcolata un'espressione ponendo le opportune parentesi nelle immissioni.

Risultati delle frazioni

- I risultati delle frazioni vengono semplificati automaticamente e il risultato è in un formato di frazione improprio.
- Quando si desidera un risultato con numeri misti, utilizzare la conversione dei numeri misti ▶n/d+>Un/d alla fine dell'espressione immessa. Questa funzione si trova in math 1: ▶n/d+>Un/d.
- I risultati delle frazioni si ottengono quando il valore calcolato può essere visualizzato entro i limiti del formato frazione supportato dalla calcolatrice e non è stato immesso alcun valore decimale nell'espressione immessa.
- Se vengono utilizzati o calcolati numeri decimali al numeratore o al denominatore di una frazione, il risultato viene visualizzato come numero decimale. L'immissione di un numero decimale impone la visualizzazione del risultato in formato decimale.
- Utilizzare 2nd [f→→d] (sopra →=) sui risultati per provare ad eseguire conversioni da frazione a numero decimale entro i limiti di visualizzazione delle frazioni consentiti da questa calcolatrice numerica.

Numeri misti e conversioni

- 2nd [□B] permette immettere un numero misto. Premere i tasti freccia per scorrere ciclicamente tra parte intera, numeratore e denominatore.
- math 1 converte tra frazioni semplici e formato con numeri misti (▶n/d↔ Un/d).
- 2nd [f • d] converte i risultati tra frazioni e numeri decimali.

Immissione MathPrint™

- Per immettere numeri o espressioni al numeratore e al denominatore in modalità MathPrint™, premere
 .

 Premere B prima o dopo che numeri o funzioni possano popolare in anticipo il numeratore con parti della propria espressione. Osservare la schermata mentre si premono i tasti per essere certi di immettere l'espressione esattamente come necessario.

Nella schermata iniziale.

- Per incollare un'immissione precedente dalla cronologia al denominatore, posizionare il cursore al denominatore, premere 2nd o per passare alla cronologia. Premere o per scorrere fino all'immissione desiderata, quindi premere enter per incollare l'immissione al denominatore.

Calcolo dell'espressione immessa

 Quando si preme enter per calcolare l'espressione immessa, possono essere visualizzate delle parentesi per indicare chiaramente come è stata interpretata e calcolata dalla calcolatrice. Se non corrisponde a ciò che si era previsto, copiare l'espressione immessa e modificarla secondo necessità.

Modalità Classic o immissione Classic

 Se il cursore è in una posizione di immissione Classic, immettere l'espressione del numeratore tra parentesi, quindi premere B per visualizzare la barra spessa della frazione e infine immettere l'espressione del denominatore anch'essa tra parentesi in modo che il risultato sia calcolato come ci si aspetta per il proprio problema.

n/d, Un/d	$\begin{array}{c} \hline B & 3 \textcircled{\bullet} 4 \textcircled{\bullet} + 1 \\ \hline 2nd & \Box B \\ \hline enter \end{array}$ Nota: Le parentesi vengono aggiunte automaticamente.	$\frac{3}{4} + \left(1\frac{7}{12}\right)^{\text{DEG}}$	7 <u>3</u> 3
▶n/d4▶Un/d	9 🗄 2 🕢 math 1 enter	⁹ 2 ▶n∕d•Un∕d	4 ¹ / ₂
f 4 ▶d	4 $[\square_{B}^{a}]$ 1 \odot 2 $()$ [2nd $[f^{4} \vdash d]$ enter	4≟≯f∿d	4.5

Esempi in modalità MathPrint™

Esempio	 B 1.2 + 1.3 ⊙ 4 enter Nota: Il risultato è un numero decimale in quanto nella frazione sono stati utilizzati numeri decimali. 	<u>1.2+1.3</u> Ч 0.625
Esempio	$\begin{array}{c} \textcircled{b}{$ [-]$ 5 + 2nd [-]$} \\ 5 \underline{x^2} - 4 (1) \\ \hline 6 \bigcirc \bigcirc 2 (1) \\ \hline enter \end{array}$	$\frac{\frac{-5+\sqrt{5^2-4(1)(6)}}{2(1)}}{-2}$

Esempi in modalità Classic

n/d, Un/d	3 ⊕ 4 + 1 2nd [□ ⊕ 7 ⊕ 12 enter	3/4+1.7/12 7/3
▶n/d4▶Un/d	9 🗄 2 math 1 enter	9 / 2▶n/d•Un/d 4⊔1 / 2
f∢▶d	4 [2nd] [□금] 1 🗄 2 [2nd] [f◀▶d] [enter]	4⊔1∕2▶f • d 4.5
Parentesi	$\begin{array}{c c} (& 2 \ x^2 \ - \ 1 \) \\ \hline (& 2 \ x^2 \ + \ 1 \) \\ \end{array} $ enter	(22-1)/(2 ² +1) 3/5

Notazione scientifica [EE]

EE

[EE] è un tasto di scelta rapida per immettere un numero con formato in notazione scientifica. Un numero come (1.2 x 10⁻⁴) viene immesso nella calcolatrice nel formato 1.2E-4.

Esempio

2 EE 5 enter Nota: Immettere (2 x 10 ⁵) mediante la notazione E della calcolatrice.	2e5 [™] 200000
mode ⊙ () enter Nota: L'impostazione di modalità SCI visualizza i risultati in notazione scientifica.	DICTINE RADIAN DICTINE RADIAN NORMAL STOP ENG ICTI 0 1 2 3 4 5 6 7 8 9 RICTI 0 + bi r∠0
(Clear) [enter]	2ε5 [№] 200000 2ε5 2ε5
Clear 4 EE 2 × 6 EE (4e2*6e ⁻¹ 2.4e2
 B 5 EE 3 ⊙ 2 EE 4 enter 2nd [answer] 2nd [f → d] 	5E3 2E4 ans▶f+d 2.5e-1

Esempio

Problema tratto da libro di testo (dear ($5 \times 10 x^{\circ} 3 \oplus$) \div ($2 \times 10 x^{\circ} 4 \oplus$) enter	(5*10 ³)∕(2*10 ⁴) 2.5ε-1
Mediante EE Clear 5 EE 3 ÷ 2 EE 4 enter	5e3/2e4 2.5e-1

Potenze, radici e reciproci

[<i>x</i> ²]	Calcola la radice quadrata di un valore.
x□	Eleva un valore alla potenza indicata. Utilizzare per spostare il cursore fuori dalla potenza in modalità MathPrint [™] .
2nd] [v-]	Calcola la radice quadrata di un valore non negativo. Nelle modalità dei numeri complessi, a+bi e r $\angle \theta$, calcola la radice quadrata di un valore

	reale negativo.
[2nd] [□√-]	Calcola la radice xesima di qualsiasi valore non negativo e qualsiasi radice con indice dispari di un valore negativo.
[1]	Calcola il reciproco del valore immesso come 1/x.

Esempi

5 x^2 + 4 x^2 2 + 1 () enter	5 ² +4 ²⁺¹	DEG	89
10 🖓 () 2 enter		DEG	* •
	10 ⁻²		$\frac{1}{100}$
[2nd] [√-] 49 [enter]	149	DEG	7
2nd [√] 3 x ² + 2 x ^c 4 enter	√3 ² +2 ⁴	DEG	5
6 [2nd] ["v-] 64 [enter]	¶164	DEG	2
3 enter 2nd $\begin{bmatrix} 1\\ - \end{bmatrix}$ enter	$\frac{3}{\frac{1}{ans}}$	DEG	3 13 3

Pi (simbolo Pi)

 π_{i}^{e} (tasto multifunzione)

- π = circa 3,14159265359 per i calcoli.
- π = circa 3.141592654 per la visualizzazione in virgola mobile.

Esempio

π	2 \times π_i^{e} enter	2 ∗ π	^{DEG} 2π
	0 Z	2*π 2π •	2π 6.283185307

Problema

Qual è l'area di un cerchio se il raggio è 12 cm?

Promemoria: A = $\pi \times r^2$

π_i^{e} × 12 x^2 enter		DEG 📥 🛨
	$\pi * 12^2$	144π
	Î44π ↔	
	452	2.3893421

L'area del cerchio è 144 π cm quadrati. L'area del cerchio è circa 452,4 cm quadrati se il valore viene arrotondato a una cifra decimale.

Math

math MATH

[math] visualizza il menu MATH:

1:▶n/d4▶Un/d	Converte tra frazioni semplici e formato con numeri misti.
2:lcm(Minimo comune multiplo Sintassi: I cm(valoreA,valoreB)
3:gcd(Massimo comun divisore Sintassi: gcd(valoreA,valoreB)
4:▶Pfactor	Fattori primi
5:sum(Sommatoria Sintassi: sum(<i>espressione,variabile,indice</i> <i>inferiore,indice superiore</i>) (sintassi in modalità Classic)
6:prod(Produttoria Sintassi: prod(espressione,variabile,indice inferiore,indice superiore)

	(sintassi in modalità Classic)
7:nDeriv(Derivata numerica in un punto con la tolleranza come argomento facoltativo, ε, quando il comando viene utilizzato in modalità Classic, immissione classica, e in modalità MathPrint™.
	Sintassi: nDeriv(espressione,variabile,punto [,tolleranza])
	(sintassi in modalità Classic)
8:fnInt(Integrale numerico su un intervallo con la tolleranza come argomento facoltativo, ε , quando il comando viene utilizzato in modalità Classic, immissione classica, e in modalità MathPrint ^M .
	Sintassi: fnlnt(espressione,variabile,indice inferiore,indice superiore[,tolleranza])
	(sintassi in modalità Classic)

▶n/d4▶Un/d	9 🗄 2 🕟 math 1 enter	⁹ / ₂ ▶ n/d•Un/d 4 ¹ / ₂
lcm(math 2 6 [2nd [,] 9]) [enter]	lcm(6,9) 18
gcd([math] 3 18 [2nd] [,] 33 [) [enter]	9cd(18,33) 3
▶Pfactor	253 (math) 4 (enter)	253)Pfactor 11*23
sum($ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sum_{x=1}^{4} (x*2) \qquad \qquad 20$
prod(math 6 1 () 5 () 1 () x_{abcd}^{yet} () () enter	$\begin{bmatrix} 5\\ \Pi\\ \varkappa=1 \begin{pmatrix} \frac{1}{\chi} \end{pmatrix} & \frac{1}{120} \end{bmatrix}$

Nota: Per esempi e ulteriori informazioni, vedere Derivata numerica, nDeriv(, e Integrale numerico, fnInt(in Funzioni matematiche.

Funzioni numeriche

math NUM

math () visualizza il menu NUM:

1:abs(Valore assoluto
	Sintassi: abs(valore)
2:round(Valore arrotondato
	Sintassi: round(valore,num. di decimali)
3:iPart(Parte intera di un numero
	Sintassi: iPart(valore)
4:fPart(Parte frazionaria di un numero
	Sintassi: fPart(valore)
5:int(Massimo intero che è \leq al numero
	Sintassi: int(valore)
6:min(Minimo tra due numeri
	Sintassi: min(valoreA,valoreB)
7:max(Massimo tra due numeri
	Sintassi: max(valoreA,valoreB)
8:mod(Modulo (resto del primo numero ÷ secondo
	numero)
	Sintassi: mod(dividendo, divisore)

abs([math] () 1 [(] [2nd] [√-] 5 [enter]	। -12 ।
round(math ③ 2 1.245 2nd [,] 1]) enter ④ ④ enter ④ ④ ● enter ④ ④ ④ ● 5 enter	round(1.245,1) 1.2 round(1.255,1) 1.3
iPart(fPart(4 enter 9 sto \rightarrow x_{abcd}^{yzz} enter math (•) 3 x_{abcd}^{yzz} (•) enter math (•) 4 x_{abcd}^{yzz} (•)	$\begin{array}{cccc} 4.9 \rightarrow x & 4.9 \\ \text{iPart}(x) & 4 \\ \text{fPart}(x) & 0.9 \\ \end{array}$

	enter		
int(math () 5 () 5.6 () enter	int(-5.6) [™]	-ĕ
min(math 🕑 6	min(A -E)	Ĵ.
max(4 [nd [,] () 5)) enter (math) (•) 7	max(.6,.7)	0.7
	.6 2nd [,] .7) enter		
mod(math () 8 17 2nd [,] 12) enter () () () () 6 enter () () () () 6 enter	mod(17,12) mod(17,16)	- 5 1

Angoli

math DMS

math () () visualizza il menu DMS:

1:°	Specifica il modificatore di unità di misura degli angoli in gradi (°).
2:'	Specifica il modificatore di unità di misura degli angoli in primi (').
3:″	Specifica il modificatore di unità di misura degli angoli in secondi (").
4:r	Specifica un angolo in radianti.
5:g	Specifica un angolo in gradi centesimali.
6:▶DMS	Converte l'angolo da gradi decimali in gradi, primi e secondi.

Scegliere una modalità di espressione degli angoli dalla schermata delle modalità. È possibile scegliere tra DEGREE (modalità predefinita), RADIAN o GRADIAN. Le immissioni vengono interpretate e i risultati visualizzati secondo l'impostazione della modalità di espressione degli angoli senza avere necessità di immettere un modificatore di unità di misura degli angoli.

RADIAN	mode () enter	DEGREE [3:10:13] GRADIAN NORMAL SCI ENG ILOAT 0 1 2 3 4 5 6 7 8 9 Rafil a+bi r∠0
--------	---------------	---

	Clear Image: 30 math () ()	MATH NUM DMS 2:' 3↓"
	1) enter	sin(30°) ^{RAD} 1 2
DEGREE	[mode] enter	DECTREE RADIAN NORMAN SCI ENG RECOND 0 1 2 3 4 5 6 7 8 9 RECO RECOND 0 1 2 3 4 5 6 7 8 9 RECOND 0 + bi r∠0
	$\begin{array}{c} \hline \\ \textbf{Clear} \\ \textbf{2} \left[\overline{\pi}_{i}^{e} \right] \\ \hline \\ \textbf{math} \end{array} \textcircled{\textbf{9}} \textbf{\textbf{9}} \textbf{\textbf{4}} \\ \hline \\ \textbf{enter} \end{array}$	sin(30°) [™] 1/2 2π ^r 360
▶DMS	1.5 math () () 6 enter	sin(30°) [™] 1/2 2π ^r 360 1.5≻DMS 1°30'0"

Problema

Due angoli adiacenti misurano rispettivamente 12° 31′ 45″ e 26° 54′ 38″. Sommare i due angoli e visualizzare il risultato in formato DMS. Arrotondare i risultati alla seconda cifra decimale.

clear mode 📀 🕤 🖗 🖗 enter	Indrama RADIAN GRADIAN NORMAN SCI ENG FLOAT 0 1 23 4 5 6 7 8 9 Ran a+bi r∠0
Clear 12 math () ()	MATH NUM DMS 188° 2:' 3↓"
1	
31 math () () 2	39.44
45 math () () 3	
+ 26 math) () 1	
54 math () () 2	
38 math () () 3 enter	

math		۲	6	enter	
------	--	---	---	-------	--

Il risultato è 39 gradi, 26 minuti primi e 23 minuti secondi.

Problema

È noto che 30° = π / 6 radianti. Nella modalità predefinita, in gradi, trovare il seno di 30°. Quindi impostare il calcolatore nella modalità in radianti e calcolare il seno di π / 6 radianti.

Nota

- Premere clear per cancellare la schermata tra i diversi problemi.
- La riga degli indicatori visualizza l'impostazione in modalità DEG o RAD solo per il calcolo corrente.

Clear (Bin 30) enter	sin(30)	<u>1</u> 2
$\begin{array}{c} \hline \textbf{mode} \ \textcircled{0} \ enter \ \hline \textbf{clear} \\ \hline \textbf{sin} \ \hline \boldsymbol{\pi}_{i}^{\textcircled{o}} \ \end{matrix} \\ \hline \begin{array}{c} \textbf{sin} \ \end{array} \\ \hline \textbf{6} \ \textcircled{0} \ \end{matrix} \\ \hline \begin{array}{c} \textbf{nter} \ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \textbf{star} \ \textbf{atar} \ \end{array} \\ \hline \begin{array}{c} \textbf{star} \ \textbf{atar} \ a$	sin(30) sin(₩)	1 2 1 2

Mantenere la modalità in radianti sulla calcolatrice e calcolare il seno di 30°. Cambiare l'impostazione della calcolatrice nella modalità in gradi e trovare il seno di π / 6 radianti.

Clear sin-1 30 math (▶) (▶) enter () enter	sin(30°)	12
mode enter clear	sin(#r)	12
sin-1 <u>π e</u> 6) math)) 4		-
) enter		

Funzioni trigonometriche

sin-1 cos-1 tan-1 (tasti multifunzione)

Premendo ripetutamente uno di questi tasti multifunzione è possibile accedere alla corrispondente funzione trigonometrica o trigonometrica inversa. Impostare la modalità di espressione degli angoli - Degree o Radian - prima del calcolo.

Esempio di modalità Degree

tan	Clear mode enter [imr] 45) enter	tan(45) 📫 🕺	i
tan-1	(clear)	tan ⁻¹ (1) 4	Š
COS	Clear 5 × [] 60)	5*cos(60) 1	1122

Esempio in modalità Radian

tan	clear mode () enter clear im: π°_{\cdot} π°_{\cdot} π°_{\cdot} enter ()	tan($\frac{\pi}{4}$) 1
tan-1	Clear tan, tan, tan, 1) enter	tan ⁻¹ (1) $\frac{\pi}{4}$
	.	tan¹(1) मू मु मु 0.785398163
cos	$\begin{array}{c} \hline \\ \textbf{clear} \\ \textbf{5} \times \underbrace{\text{css}}_{i} & \overline{\pi_{i}^{e}} & \underline{\textbf{B}} \\ \hline \\ \hline \\ \textbf{enter} \end{array} \qquad \textbf{4} \ \textbf{9}$	$5*\cos\left(\frac{\pi}{4}\right)^{RAD}$
	(clear) (→ ≈	<u>5√2</u> ↔ 3.535533906

Problema

Trovare l'angolo A del triangolo del triangolo rettangolo sottostante. Quindi calcolare l'angolo B e la lunghezza dell'ipotenusa c. Le lunghezze sono in metri. Arrotondare i risultati a una cifra decimale.

Promemoria:

tan A =
$$\frac{7}{3}$$
 pertanto $m \angle A$ = tan-1 $\left(\frac{7}{3}\right)$

 $m \angle A + m \angle B + 90^\circ = 180^\circ$ pertanto $m \angle B = 90^\circ - m \angle A$

 $_{\rm C}=\sqrt{3^2+7^2}$

Nota: Impostare la modalità a DEGREE e arrotondare a 1 cifra decimale per i calcoli.

mode enter \odot \odot $()$ $()$ enter	International States International Science International International Science Internat
(clear) tan-, tan-, 7 🗄 3 ()) enter	tan-1(7/3) 66.8
90 – 2nd [answer] enter	tan ⁻¹ (7/3) 66.8 90-ans 23.2
[2nd] [√-] 3 (x ²) + 7 (x ²) [enter]	tan¹(<u>f</u>) 66.8 90-ans 23.2 √3 ² +7 ² √58
₩ <i>≅</i>	90-ans 23.2 √3 ² +7 ² √58 √58 ↔ 7.6
mode enter \odot \odot $()$ $()$ enter	DEG3333 RADIAN NDRYAN SCI ENG FLOAT 0 0 2 3 4 5 6 7 8 9 3360 4+6i r∠0

Con l'arrotondamento a una cifra decimale, la misura dell'angolo A è $66,8^{\circ}$, la misura dell'angolo B è $23,2^{\circ}$ e la lunghezza dell'ipotenusa è 7,6 metri.

Funzioni iperboliche

sin-1 cos-1 tan-1 (tasti multifunzione)

Premendo ripetutamente uno di questi tasti multifunzione è possibile accedere alla corrispondente funzione iperbolica o iperbolica inversa. Le modalità di espressione degli angoli non incide sui calcoli con funzioni iperboliche.

Esempio

Impostare il separatore decimale mobile	mode 🕤 🕤 enter	DEG333 RADIAN GRADIAN NORMAN SCI ENG IOGNO 0 1 2 3 4 5 6 7 8 9 Rana a+bi r∠0 ↓
		sinh(5)+2 ^{°°°} 76.20321058
	Order 2nd () Sing Sing Sing enter	sinh(5)+2 ⁶ 76.20321058 sinh ⁻¹ (5)+2 4.312438341

Funzioni logaritmiche ed esponenziali

In log e⁻¹⁰ (tasti multifunzione)

 $\ln \log$ incolla il logaritmo naturale, In, di un numero in base e. L'argomento della funzione è $\ln(valore)$.

e = circa 2,718281828459 per i calcoli.

e = circa 2.718281828 per la visualizzazione in modalità a virgola mobile.

<u>In log</u> <u>In log</u> incolla il logaritmo comune, \log_{10} , di un numero. L'argomento della funzione è **log**(*valore*).

<u>In log</u> <u>In log</u> incolla la funzione logBASE come un modello MathPrint[™]. Quando è necessario, gli argomenti nell'immissione in modalità Classic sono **logBASE** (*valore,base*).

 $e^{-10^{-1}}$ incolla *e* alla funzione di elevamento a potenza.

 $e^{\Box 10^{\Box}}$ $e^{\Box 10^{\Box}}$ incolla 10 alla funzione di elevamento a potenza.

log	In log In log 1) Enter	lo9(1) 0
In	[n log 5]) × 2 enter	log(1) 0 ln(5)*2 3.218875825
10 [□]	$\begin{array}{c} \hline \\ e^{\circ} 10^{\circ} & e^{\circ} 10^{\circ} \\ \hline \\ n \log & 2 \\ \hline \\ n \log & e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \end{array} \begin{array}{c} e^{\circ} 10^{\circ} \\ \hline \\ \end{array} \end{array}$	10 ¹⁰⁹⁽²⁾ 2 109(10 ⁵)5
e□	[clear] [e ^o 10 ^o] .5 [enter]	e ^{.5} 1.648721271

Statistica, regressioni e distribuzioni

data 2nd [stat-reg/distr]

data consente di immettere e modificare le liste di dati. (vedere la sezione Editor di dati).

[2nd [stat-reg/distr] visualizza il menu STAT-REG, che ha le seguenti opzioni.

Nota:

- Le regressioni memorizzano le informazioni di regressione, insieme ai valori statistici 2-Var per i dati, in StatVars (voce menu 1).
- Una regressione può essere memorizzata in f(x) o g(x). I coefficienti di regressione vengono visualizzati con la massima precisione.

Nota importante sui risultati: Molte delle equazioni di regressione condividono le stesse variabili a, b, c e d. Se si effettua qualsiasi calcolo di regressione, il calcolo di regressione e i valori statistici 2-Var per tali dati vengono memorizzati nel menu StatVars fino al prossimo calcolo statistico o di regressione. I risultati devono essere interpretati in base al tipo di calcolo statistico o di regressione eseguito per ultimo. Quale ausilio per interpretare correttamente, la barra del titolo ricorda quale calcolo è stato eseguito per ultimo.

1:StatVars	Visualizza un menu delle variabili del risultato statistico calcolato per ultimo. Utilizzare ⊙ e ⊙ per individuare la variabile desiderata e premere enter] per selezionarla. Se si seleziona questa

	opzione prima di calcolare 1-Var stats, 2-Var stats o qualsiasi regressione, compare un promemoria.
2:1-VAR STATS	Analizza i dati statistici da 1 insieme di dati con 1 variabile misurata, x. Possono essere compresi dati di frequenza.
3:2-VAR STATS	Analizza dati appaiati di 2 insiemi di dati con 2 variabili misurate: x, la variabile indipendente, e y, la variabile dipendente. Possono essere compresi dati di frequenza.
	Nota: 2-Var Stats calcola anche una regressione lineare e inserisce i risultati della regressione lineare. Visualizza i valori di a (pendenza) e b (intercetta y); visualizza anche i valori di r ² e r .
4:LinReg ax+b	Adatta l'equazione modello y=ax+b ai dati mediante un adattamento con il metodo dei minimi quadrati per almeno due punti dati. Visualizza i valori di a (pendenza) e b (intercetta y); visualizza anche i valori di r ² e r .
5:PropReg ax	Adatta l'equazione modello y=ax ai dati mediante adattamento con il metodo dei minimi quadrati per almeno un punto dati. Visualizza il valore di a . Supporta dati che formano a una linea verticale con l'eccezzione di tutti i dati 0.
6:RecipReg a/x+b	Adatta l'equazione modello y=a/x+b ai dati mediante adattamento con il metodo dei minimi quadrati su dati linearizzati per almeno due punti dati. Visualizza i valori di a e b ; visualizza anche i valori di r ² e r.
7:QuadraticReg	Adatta il polinomio di secondo grado y=ax ² +bx+c ai dati. Visualizza i valori di a , b e c ; inoltre visualizza un valore per \mathbf{R}^2 . Per tre punti dati, l'equazione è un adattamento polinomiale; per quattro o più punti dati è una regressione polinomiale. Sono necessari almeno tre punti dati.
8:CubicReg	Adatta il polinomio di terzo grado $y=ax^3+bx^2+cx+d$ ai dati. Visualizza i valori di a , b , c e d ; inoltre visualizza un valore per R ² . Per quattro punti dati, l'equazione è un adattamento polinomiale; per cinque o più punti dati è una regressione polinomiale. Sono necessari almeno quattro punti.
9:LnReg a+blnx	Adatta l'equazione modello y=a+b ln(x) ai dati utilizzando un adattamento con il metodo dei minimi quadrati e valori trasformati ln(x) e y. Visualizza i valori di $\mathbf{a} \in \mathbf{b}$; visualizza anche i valori di $\mathbf{r}^2 \in \mathbf{r}$.

:PwrReg ax^b	Adatta l'equazione modello y=ax ^b ai dati utilizzando un adattamento con il metodo dei minimi quadrati e valori trasformati ln(x) e ln(y). Visualizza i valori di a e b ; visualizza anche i valori di r ² e r .
:ExpReg ab [*] x	Adatta l'equazione modello y=ab ^x ai dati utilizzando un adattamento con il metodo dei minimi quadrati e valori trasformati x e ln(y). Visualizza i valori di a e b ; visualizza anche i valori di r ² e r .
:expReg ae^(bx)	Adatta l'equazione modello y=a e^(bx) ai dati mediante adattamento con il metodo dei minimi quadrati su dati linearizzati per almeno due punti dati. Visualizza i valori di a e b ; visualizza anche i valori di r ² e r .

 $\fbox{2nd}$ [stat-reg/distr] <math display="inline"> visualizza il menu <code>DISTR</code>, che contiene le seguenti funzioni distribuzione:

1:Normalpdf	Calcola la funzione della densità di probabilità (pdf) per la distribuzione normale in corrispondenza di un valore <i>x</i> . I valori predefiniti sono media <i>mu</i> =0 e deviazione standard <i>sigma</i> =1. La funzione della densità di probabilità (pdf) è: $f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0$
2:Normalcdf	Calcola la probabilità di distribuzione normale tra <i>LOWERbnd</i> e <i>UPPERbnd</i> per la media <i>mu</i> e la deviazione standard <i>sigma</i> specificate. I valori predefiniti sono <i>mu</i> =0; <i>sigma</i> =1; con <i>LOWERbnd</i> = -1E99 e <i>UPPERbnd</i> = 1E99. Nota: L'intervallo di valori da -1E99 a 1E99 ranpresenta da -infinito a infinito
3:invNormal	Calcola la funzione della distribuzione normale cumulativa inversa per una data area sottesa dalla curva della distribuzione normale specificata da media mu e deviazione standard $sigma$. Calcola il valore x associato a un'area a sinistra del valore x . $0 \le area \le 1$ deve essere vero. I valori predefiniti sono $area=1$, $mu=0$ e $sigma=1$.
4:Binomialpdf	Calcola una probabilità in corrispondenza di x per la distribuzione binomiale discreta con il <i>numtrials</i> (numero di prove) e la probabilità di successo (p) specificati per ciascuna prova. x è un numero intero non negativo e può essere immesso con le opzioni di immissione SINGLE (singola), LIST

	(elenco) di immissioni o ALL (viene restituito l'elenco di probabilità da 0 a <i>numtrials</i>). $0 \le p \le 1$ deve essere vero. La funzione della densità di probabilità (pdf) è: $f(x) = {n \choose x} p^x (1-p)^{n-x} x = 0,1,,n$
5:Binomialcdf	Calcola una probabilità cumulativa in corrispondenza di x per la distribuzione binomiale discreta con il <i>numtrials</i> e la probabilità di successo (p) specificati per ciascuna prova. x può essere intero non negativo e può essere immesso con le opzioni di SINGLE, LIST o ALL (viene restituito un elenco di probabilità cumulative). $0 \le p \le 1$ deve essere vero.
6:Poissonpdf	Calcola una probabilità in corrispondenza di <i>x</i> per la distribuzione di Poisson discreta con la media <i>mu</i> (µ) specificata, che deve essere un numero reale > 0. <i>x</i> può essere un numero intero non negativo (SINGLE) o un elenco di numeri interi (LIST). Il valore predefinito è <i>mu</i> =1. La funzione della densità di probabilità (pdf) è: $f(x) = e^{-\mu}\mu^{x}/x!, x = 0,1,2,$
7:Poissoncdf	Calcola una probabilità cumulativa in corrispondenza di x per la distribuzione di Poisson discreta con la media mu specificata, che deve essere un numero reale > 0. x può essere un numero intero non negativo (SINGLE) o un elenco di numeri interi (LIST). Il valore predefinito è mu=1.

Risultati statistici

Variabili	1-Var o 2-Var	Definizione
n	Entrambe	Numero di punti dati x o (x , y).
x	Entrambe	Media di tutti i valori di x.
<u>y</u>	2-Var	Media di tutti i valori di y.
Sx	Entrambe	Deviazione standard dei campioni di x.
Sy	2-Var	Deviazione standard dei campioni di y.
σχ	Entrambe	Deviazione standard della popolazione <i>x</i> .
σγ	2-Var	Deviazione standard della popolazione di <i>y</i> .
Σ x ο Σ x ²	Entrambe	Sommatoria di tutti i valori di x

Variabili	1-Var o 2-Var	Definizione		
		o <i>x</i> ² .		
Σ γ ο Σ γ ²	2-Var	Sommatoria di tutti i valori di y o y^2 .		
Σχγ	2-Var	Sommatoria di ($x \times y$) per tutte le coppie xy .		
а	2-Var	Pendenza della regressione lineare.		
b	2-Var	Intercetta-y della regressione lineare.		
r ² o r	2-Var	Coefficiente di correlazione.		
x′	2-Var	Utilizza $a e b$ per calcolare il valore previsto di x quando si immette un valore di y .		
Ý	2-Var	Utilizza $a e b$ per calcolare il valore previsto di y quando si immette un valore di x .		
minX o maxX	Entrambe	Minimo o massimo dei valori di x.		
Q1	1-Var	Mediana degli elementi tra minX e Med (1° quartile).		
Med	1-Var	Mediana di tutti i punti dati.		
Q3	1-Var	Mediana degli elementi tra Med e maxX (3° quartile).		
minY o maxY	2-Var	Minimo massimo dei valori di y.		

Per definire i punti dei dati statistici:

1. Immettere i dati in L1, L2 o L3 (vedere la sezione Editor di dati).

Nota: Sono validi gli elementi di frequenza non interi. Ciò è utile quando si immettono frequenze espresse come percentuali o parti la cui somma è 1. Tuttavia, la deviazione standard del campione, Sx, non è definita per frequenze non intere e per tale valore viene visualizzato Sx=Error. Tutti gli altri valori statistici vengono visualizzati.

- 2. Premere 2nd [stat-reg/distr]. Selezionare 1-Var o 2-Var e premere enter.
- 3. Selezionare L1, L2 o L3 e la frequenza.
- 4. Premere enter per visualizzare il menu delle variabili.
- 5. Per cancellare i dati, premere data data, selezionare un elenco da cancellare e premere enter.

Esempio 1-Var

Calcolare la media di {45,55,55,55}.

Cancella tutti i dati	data data 🕤 🕤 🕤	CLR FORMULA OPS 2↑Clear L2 3:Clear L3 48Clear ALL
Dati	enter 45 ⊙ 55 ⊙ 55 ⊙ 55 enter	E DEG DEG 55 55 55 55 55 1 11(5)= 1 1
Statistica	[2nd] [quit] [2nd] [stat-reg/distr]	STATEREG [™] DISTR 18StatVars 2:1-VAR STATS 3↓2-VAR STATS
	2 (Seleziona 1-VAR STATS) ⊙ ⊙	IIIVARISTATIS (DATA: III L2 L3 FREQ: IIII L1 L2 L3 CALC
	enter	1-Var:1,1 1:n=4 2:x=52.5 3↓Sx=5
Variabile statistica	2 enter	x 52.5
	× 2 enter	x 52.5 ans∗2 105

Esempio 2-Var

Dati: (45,30); (55,25). Trovare: x'(45).

Cancella tutti i dati data data ⊕ ⊕ ⊕ 2↑Clear 3:Clear 4∎Clear	MÜLA OPS L2 L3 ALL
---	-----------------------------

Dati	enter 45 ⊙ 55 ⊙ () 30 ⊙ 25 ⊙	BE DEG DEG DEG 45 30 55 25 L2(3)=
Statistica	[2nd] [stat-reg/distr]	STATEREC [™] DISTR 18StatVars 2:1-VAR STATS 3↓2-VAR STATS
	3 (Seleziona 2-VAR STATS)	2 - VARISTATS f %DATA: 0.1 L2 L3 %DATA: L1 0.2 L3 FREQ: 0.1 L1 L2 L3 GALC
Variabili statistiche	enter 2nd [quit] 2nd [stat-reg/distr] 1 	2 <mark>-Var:L1, 2, 1</mark> ↑x'(:y'(↓minX=45
	enter 45) enter	x'(45) 15

Problema

Per le sue ultime prove, Anthony ha ottenuto i seguenti punteggi. Alle prove 2 e 4 è stato attribuito un peso di 0,5 e alle prove 1 e 3 è stato attribuito un peso di 1.

N. prova	1	2	3	4
Punteggio	12	13	10	11
Peso	1	0,5	1	0,5

- 1. Trovare il voto medio (media pesata) di Anthony.
- 2. Che cosa rappresenta il valore di n dato dalla calcolatrice? Che cosa rappresenta il valore di Σx dato dalla calcolatrice?

Promemoria: La media pesata è

 $\frac{\Sigma x}{n} = \frac{(12) \ (1) + (13) \ (0,5) + (10) \ (1) + (11) \ (0,5)}{1 + 0,5 + 1 + 0,5}$

3. L'insegnante ha dato ad Anthony 4 punti in più nella prova 4 a causa di un errore di assegnazione del voto. Trovare il nuovo voto medio di Anthony.

enter data () \odot \odot \odot \odot	CLR ⊒ORNUUE: OPS 3↑Clear L2 Frmla 4:Clear L3 Frmla 58 Clear ALL
enter $12 \odot 13 \odot 10 \odot 11 \odot$ ($) 1 \odot .5 \odot 1 \odot .5$ enter	E DEG E 13 0.5 1 10 1 1 11 0.5 1 L2(5)=
[2nd] [stat-reg/distr]	STAT=REC [™] DISTR 1:StatVars 2:1-VAR STATS 3↓2-VAR STATS
2 (c) (r) (enter)	DEG T DATA: EL L2 L3 FREQ: ONE L1 E2 L3 Grieg
enter	1=Var:11,12 1:n=3 2:x=11.3333333333 3↓Sx=Error

Anthony ha una media (\overline{x}) di 11,33 (con arrotondamento al centesimo più prossimo).

Sulla calcolatrice, *n* rappresenta la somma totale dei pesi.

n = 1 + 0,5 + 1 + 0,5.

 Σx rappresenta la sommatoria pesata dei suoi punteggi.

(12)(1) + (13)(0,5) + (10)(1) + (11)(0,5) = 34.

Cambiare l'ultimo punteggio di Anthony da 11 in 15.

Se l'insegnante aggiunge 4 punti alla prova 4, il voto medio di Anthony è 12.

Problema

La tabella sottostante riporta i risultati di una prova di frenata.

N. prova	1	2	3	4
Velocità (km/h)	33	49	65	79
Distanza di frenata (m)	5,30	14,45	20,21	38,45

Utilizzare la relazione tra velocità e distanza di frenata per stimare la distanza di frenata necessaria per un veicolo che procede a 55 km/h.

Un diagramma a dispersione tracciato manualmente di questi punti dati suggerisce una relazione lineare. La calcolatrice utilizza il metodo dei minimi quadrati per trovare la linea di migliore adattamento, y'=ax'+b, per i dati immessi negli elenchi.

La linea di migliore adattamento, y'=0,67732519x'-18,66637321 modellizza l'andamento lineare dei dati.

Premere ⊙ finché non viene evidenziato y'.	2-Var:L1,L2,1 ↑r=0.9634117172 :x'(Jy'(
enter 55)) enter	יצ' (55) 18.58651222

Il modello lineare fornisce una distanza di frenata stimata di 18,59 metri per un veicolo che procede a una velocità di 55 km/h.

Esempio di regressione 1

Calcolare una regressione lineare ax+b per i seguenti dati: {1,2,3,4,5}; {5,8,11,14,17}.

Cancella tutti i dati	data data 🕤 🕤 🕤	CER FORMÜLA OPS 2↑Clear L2 3:Clear L3 4∎Clear ALL
Dati	enter $1 \odot 2 \odot 3 \odot 4 \odot$ $5 \odot 0$ $5 \odot 8 \odot 11 \odot 14 \odot$ 17 enter	E DEG EE 3 11 14 4 14 17 L2(6)=
Regressione	2nd [quit] 2nd [stat-reg/distr] ⊙ ⊙ ⊙	STATEREC DISTR 211-VAR STATS 3:2-VAR STATS 4.LinReg ax+b
	enter	∞DATA: Image: Constraint of the second
	 ⊙ ⊙ ⊙ ⊙ enter Premere ⊙ per esaminare tutte le variabili del risultato. 	ax+b:L1,L2,1 1:a=3 2:b=2 3↓r ² =1

Esempio di regressione 2

Calcolare la regressione esponenziale per i seguenti dati:

• L1 = {0,1,2,3,4}; L2 = {10,14,23,35,48}

- Trovare il valore medio dei dati in L2.
- Confrontare i valori della regressione esponenziale con L2.

Cancella tutti i dati	(data) (data) 4	E DEG E L1(1)=
Dati	$0 \odot 1 \odot 2 \odot 3 \odot$ 4 $\odot 0 10 \odot 14 \odot$ $23 \odot 35 \odot 48$ enter	EE DEG EE 2 23 35 4 48 L2(6)=
Regressione	2nd [stat-reg/distr] ⊙ ⊙	STATEREC [™] DISTR ↑PwrRe9 ax^b ExpRe9 ab^x :expRe9 ae^(bx)
Salvare l'equazione di regressione in f(x) nel menu table.	enter 🕤 🕤 🕤 () enter	xDATA: Def L2 L3 f yDATA: L1 L2 L3 FREQ: IIII L2 L3 FREQ: IIII L1 L2 L3 IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Equazione di regressione	enter	ab ^x:L1, <u>L2, 1</u> 1: a=9.8752598923 2:b=1.4998307325 3↓r ² =0.994802811
Trovare il valore medio (ȳ) dei dati in L2 mediante StatVars.	2nd [stat-reg/distr] 1 (Seleziona StatVars) $\odot \odot \odot$ $\odot \odot \odot$ $\odot \odot \odot$ $\odot \odot \odot$	Abda: L1, L2, 1 74Sx=1, 58113883 8: gx=1, 414213562 9Uy=26 Notare che la barra del titolo ricorda all'utente l'ultimo calcolo statistico o di regressione.
Esaminare la tabella dei valori dell'equazione di regressione.	table 1	f(x)=9.87525989 [↑] ↓
	enter 🕤 0 enter 1 enter	Inble SetupDesStart=0 \uparrow Step=1 κ = ?CALC

|--|

Attenzione: Se a questo punto si calcola 2-Var Stats sui propri dati, le variabili **a** e **b** (insieme con r e r²) saranno calcolate come una regressione lineare. Non ricalcolare 2-Var Stats dopo il calcolo di nessun'altra regressione se si desidera preservare i propri coefficienti di regressione (a, b, c, d) e i valori r per il proprio particolare problema nel menu **StatVars**.

Esempio di distribuzione

Calcolare la distribuzione pdf binomiale in corrispondenza dei valori di x $\{3,6,9\}$ con 20 prove e una probabilità di successo di 0,6. Immettere i valori di x nell'elenco L1, memorizzare i risultati in L2, quindi trovare la sommatoria delle probabilità e memorizzarla nella variabile *t*.

Cancella tutti i dati	data data 👁 🕤 🕤	CLR FORMULA OPS 2↑Clear L2 3:Clear L3 48Clear ALL
Dati	enter 3 ⊙ 6 ⊙ 9 enter	E DEG E 3 6 9 L1(4)=
DISTR	 2nd [stat-reg/distr] → • 	DISTR 1:Normalpdf 2:Normalcdf EU Binomialpdf
	enter 🕥	Binomioliper: ↑ x: SINGLE DIST ALL
	enter 20 交 0.6	Binomici Pdf UIST † TRIALS=n=20
		P(SUCCESS)=0.6■ ↓
	enter 💿 🕤	BINOMIA IPdf LTSI † %LIST: 101 L2 L3 SAVE T0: L1 102 L3
		CALC

enter	E DEG E 6 0.004854 9 0.070995 L1(1)=3
data () 4 () enter	SUMLERST T SUM LIST: L1 12 L3 CALC
enter () () () () (enter) (enter)	СШИТЕЛЯТ ^{DE5} ↑ SUM OF LIST=0.0758915335 STORE: No x y z i a b c d DONI

Probabilità

 $\left[\begin{array}{c} {}_{nCr} \\ {}_{nPr} \end{array} \right]$ 2nd [random]

[Infr] è un tasto multifunzione che consente di scorrere ciclicamente le seguenti opzioni:

i	Il fattoriale di un numero, n!, è il prodotto dei numeri interi positivi da 1 a <i>n</i> . Il valore di <i>n</i> deve essere un numero intero positivo \leq 69. Quando n = 0, n! = 1
nCr	Calcola il numero di possibili combinazioni dati <i>n</i> e <i>r</i> , interi non negativi. L'ordine degli oggetti non è importante, come in una mano di carte.
nPr	Calcola il numero di possibili disposizioni di n elementi presi r alla volta, dati $n \in r$, interi non negativi. L'ordine degli oggetti è importante, come in una gara.

[2nd] [random] visualizza un menu con le seguenti opzioni:

rand	Genera un numero reale casuale tra 0 e 1. Per controllare una sequenza di numeri casuali, memorizzare un numero intero (valore seme) ≥ 0 in rand . Il valore seme cambia in modo casuale ogni volta che viene generato un numero casuale.
randint(Genera in intero casuale compreso tra due interi, $A \in B$, dove $A \leq \text{randint} \leq B$. Gli argomenti della funzione sono: randint (<i>interoA</i> , <i>interoB</i>)

!	4 [!n?/ nPr enter	4! ^{DEG} 24
nCr	52 [inf] [inf] 5 enter	4! 24 52 nCr 5 2598960
nPr	8 $\lfloor \frac{1}{nPr} \rfloor$ $\lfloor \frac{1}{nPr} \rfloor$ $\lfloor \frac{1}{nPr} \rfloor$ 3 enter	4! 24 52 nCr 5 2598960 8 nPr 3 336
Memorizza il valore in rand	5 sto→ 2nd [random]	RANDOM 1: rand 2: randint (
	1 (Seleziona rand) enter	5→rand [™] 5
rand	[2nd] [random] 1 [enter]	5→rand 5 rand 0.000093165
randint(2nd [random] 2 3 2nd [,] 5]) enter	5→rand 5 rand 0.000093165 randint(3,5) 5

Problema

Una gelateria pubblicizza la produzione di 25 gusti di gelato artigianale. Si desidera ordinare tre gusti diversi in una coppa. Quante combinazioni di gelato si possono provare nel corso di un'estate molto calda?

È possibile scegliere tra 2300 coppe con combinazioni di gusti diverse!

Strumenti matematici

Questa sezione contiene informazioni sull'uso degli strumenti della calcolatrice come le liste di dati, le funzioni e le conversioni.

Operazioni memorizzate

2nd [op] 2nd [set op]

[2nd [set op] permette di memorizzare un'operazione.

2nd [op] inserisce l'operazione nella schermata iniziale.

Per impostare un'operazione e richiamarla in seguito:

- 1. Premere 2nd [set op].
- 2. Immettere qualsiasi combinazione di numeri, operazioni e/o valori.
- 3. Premere enter per memorizzare l'operazione.
- 4. Premere [2nd [op] per richiamare l'operazione memorizzata e applicarla all'ultimo risultato o all'immissione corrente.

Se si applica 2nd op direttamente a un risultato 2nd op, il contatore di iterazioni **n=1** viene incrementato.

Cancella operazione	2nd [set op] Se è presente un'operazione memorizzata, premere Clear per cancellarla.	op= Enter operation. Set op:[enter] ↓
Imposta operazione	∑ 2 + 3	op=*2+3 ↓
	enter	Operation set! [2nd][op] pastes to Home Screen.
Richiama operazione	4 [2nd] [op]	4*2+3 n=1 11

	[2nd] [op]	4*2+3 11*2+3	DEG	n=1 n=2	11 25
	[2nd] [op]	4*2+3 11*2+3 25*2+3	DEG	n=1 n=2 n=3	11 25 53
Ridefinisci operazione	Clear 2nd [set op] Clear x^2 enter	0P= ²	DEG		t
Richiama operazione	5 2nd [op] 20 2nd [op]	5 ² 20 ²	DEG	n=1 n=1 '	25 400

Problema

Un negozio in zona permette di guadagnare punti fedeltà con cui si possono ottenere vari regali. Il negozio aggiunge 35 punti all'applicazione del telefono cellulare del cliente per ogni visita. Si desidera ottenere un download di musica che costa 275 punti. Quante visite ci vorranno? Attualmente si possiedono 0 punti.

2nd [set op] Clear + 35	op=+35∎	DEG
enter		t
0 [2nd] [op] [2nd] [op] [2nd] [op] [2nd] [op]	0+35 35+35 70+35 105+35	^{DEG} n=1 35 n=2 70 n=3 105 n=4 140
2nd [op] 2nd [op] 2nd [op] 2nd [op]	140+35 175+35 210+35 245+35	n=5 175 n=6 210 n=7 245 n=8 280

Dopo 8 visite al negozio si avranno 280 punti, che sono sufficienti per il download.

Editor di dati e formule di lista

data

Premendo data viene visualizzato l'Editor di dati in cui è possibile immettere dati in un massimo di 3 liste (L1, L2, L3). Ciascuna lista può contenere fino a 50 elementi.

Nota: Questa funzione è disponibile soltanto in modalità DEC.

Quando si modifica una lista, premere data per accedere ai seguenti menu:

CLR	FORMULA	OPS
1:Clear L1	1:Add/Edit Frmla	1:Sort Sm-Lg
2:Clear L2	2:Clear L1 Frmla	2:Sort Lg-Sm
3:Clear L3	3:Clear L2 Frmla	3:Sequence
4:Clear ALL	4:Clear L3 Frmla	4:Sum List
	5:Clear ALL	

Immissione modifica dei dati

- Utilizzare ④ ④ ④ ⑤ per evidenziare una cella dell'editor dei dati, quindi immettere un valore.
- Le impostazioni di modalità come le modalità del formato numerico, a separatore decimale mobile o fisso e di espressione degli angoli influiscono sulla visualizzazione del valore di una cella.
- Verranno visualizzati le frazioni, i radicali e i valori di π .
- Premere:
 - sto→ nella modifica di una cella per memorizzare il valore della cella in una variabile.
 - eral per alternare il formato numerico quando un cella è evidenziata.
 - delete per eliminare una cella.
 - enter clear per cancellare la riga di modifica di una cella.
 - 2nd [quit] per tornare alla schermata iniziale.
 - 2nd per portarsi all'inizio di una lista.
 - 2nd ⊙ per portarsi alla fine di una lista.
- Utilizzare il menu CLR per cancellare i dati da una lista.

Formule di lista (menu FORMULA)

- Nell'editor dei dati, premere data) per visualizzare il menu FORMULA.
 Selezionare la voce di menu appropriata per aggiungere o modificare una formula di lista nella colonna evidenziata o cancellare le formule da una particolare lista.
- Quando una cella dei dati è evidenziata, la pressione di sto- permette di accedere rapidamente all'apertura dello stato di modifica formula.
- Nello stato di modifica formula, premendo data viene visualizzato un menu per incollare L1, L2 o L3 nella formula.
- Le formule non possono contenere un riferimento circolare come L1=L1.
- Quando una lista contiene una formula, la riga di modifica visualizza il nome della cella in negativo. Le celle si aggiornano se le liste vengono aggiornate.

- Per cancellare la lista di una formula, prima cancellare la formula e poi cancellare la lista.
- Se si utilizza sto + nella formula di una lista, l'ultimo elemento della lista calcolato viene memorizzato nella variabile. Le liste non possono essere memorizzate.
- Le formule di lista accettano tutte le funzioni della calcolatrice e numeri reali.

Opzioni (menu OPS)

Nell'editor di dati, premere $\overline{\text{data}}$ () per visualizzare il menu **OPS**. Selezionare la voce di menu appropriata per:

- Ordinare valori dal minimo al massimo o dal massimo al minimo.
- Creare una Sequenza di valori per riempire una lista.
- Effettuare la sommatoria degli elementi di una lista e memorizzarla in una variabile per ulteriori analisi.

Riempi una lista con una sequenza	() data () 3 () () enter	SEQUENCE DES FILL LIST: L1 L2 L3
		1≤dim(list)≤50 ↓
	$ \begin{array}{c} \left[\frac{\pi}{e} \right] \\ \left[x_{abcd}^{yzz} \right] \\ enter \end{array} \begin{array}{c} 4 \\ enter \end{array} \begin{array}{c} 1 \\ enter \end{array} $	EXPR IN X:17X T START X:1 END X:4 STEP SIZE:1 STEP SIZE:1
	enter	E DEG E 1/4 0.25 2π 1/2 0.5 2π 3/4 0.75 3π 1 1 4π L3(1)=π 4 4
Memorizza la sommatoria di L1 nella variabile z	data () 4 enter	SUMITEST T Sum List: III L2 L3 Grieg
	enter () () () enter enter	SUNTESTI T SUM OF LIST=5/2 STORE: No x y Z t a b c d DONIE

Problema

Un giorno di novembre, un bollettino meteorologico su Internet elencava le seguenti temperature.

Parigi, Francia 8°C

Mosca, Russia -1°C

Montreal, Canada 4°C

Promemoria: $F = \frac{9}{5}C + 32$

8 👁 🗀 1 👁 4 👁 🕅	B DEG DEG DEG 8 4 L2(1)=
data () 1	IS DEG DEG IE 8 4 A A A A
9 ÷ 5 × data 1 + 32	B DEG E -1 H BL2=9/5*L1+32
enter	EI DEG DEG EE 8 1101.1 -1 30.2 4 39.2 1.22(F)E46.4

Se la temperatura di Sydney, Australia è 21° C, trovare la temperatura in gradi Fahrenheit e memorizzarla nella variabile z.

④ ⊙ ⊙ ⊙ 21 enter	BC DEG DEG DEG -1 30.2 4 39.2 21 69.8 L1(5)=
	IS IS Dec IS IS -1 30.2 IS IS
enter 2nd [recall] 🕤 🕤	RECALL VAR 1: x=0 2: y=0 BU z=69.8

Tabella della funzione

table visualizza un menu con le seguenti opzioni:

1:Add/Edit Func	Permette di definire la funzione $f(x)$ o $g(x)$ o entrambe e genera una tabella di valori. La pressione del tasto $\textcircled{\bullet z}$ su un valore nella tabella alterna il formato numerico.
2:f(Incolla f(in un'area di immissione come la schermata iniziale per calcolare la funzione in un punto (per esempio, f(2)).

3:g(Incolla g(in un'area di immissione come la schermata iniziale per calcolare la funzione in un
	punto (per esempio, g(3)).

La tabella della funzione consente di visualizzare una funzione definita in un formato tabulare. Per configurare una tabella della funzione:

- 1. Premere table e selezionare Add/Edit Func.
- 2. Immettere una o due funzioni e premere enter.
- 3. Selezionare le opzioni Start della tabella, Step della tabella, Auto o Ask-*x* e premere [enter].

La tabella viene visualizzata mediante i valori specificati. I risultati della tabella vengono visualizzati come numeri reali solo in modalità DEC. Le funzioni complesse vengono calcolate soltanto nella schermata iniziale.

Start	Specifica il valore iniziale per la variabile indipendente, x.
Step	Specifica il valore incrementale per la variabile indipendente, x. L'incremento può essere un valore positivo o negativo
Auto	La calcolatrice genera automaticamente una serie di valori sulla base dei valori Start e Step della tabella.
Ask-x	Consente di costruire manualmente una tabella immettendo valori specifici per la variabile indipendente, x. La tabella ha un massimo di tre righe, ma è possibile sovrascrivere i valori di x secondo necessità per vedere più risultati.

Nota: Nella vista Tabella della funzione, premere <u>clear</u> per visualizzare e modificare la procedura guidata Configurazione tabella secondo necessità.

Problema

Trovare il vertice della parabola y = x(36 - x) mediante una tabella di valori.

Promemoria: Il vertice della parabola è il punto sulla parabola che è anche sull'asse di simmetria.

table 1 clear x_{abcd}^{zei} () 36 x_{abcd}^{zei})	$f(x)=x(36-x)\blacksquare$
	4
enter Clear enter	IABUE SEIUE ↑ Start=0 ↑ Step=1 ∞ = ? GUICO ∞ = ?

$15 \odot 3 \odot \odot$	TABLE SETUP T Start=15 f Step=3 x = ? AULO x = ?
enter	x f(x) 15 315 18 324 21 315 x=15 315

Dopo una ricerca in prossimità di x = 18, il punto (18,324) sembra essere il vertice della parabola in quanto sembra essere il punto di svolta dell'insieme di punti di questa funzione. Per cercare più in prossimità di x = 18, cambiare il valore di Step con valori sempre più piccoli per vedere punti più prossimi al punto (18,324).

Problema

Un ente di beneficenza ha raccolto \$3.600 per aiutare a sovvenzionare una mensa locale. Alla mensa locale verranno elargiti ogni mese \$450 fino all'esaurimento dei fondi. Per quanti mesi l'ente di beneficenza sovvenzionerà la mensa?

Promemoria: Se x = mesi e y = denaro residuo, y = 3600 - 450x.

table 1 clear 3600 - 450 x ^{yzt}	f(x)=3600 [™] -450x∎† ↓
$\begin{array}{l} \hline \\ enter \\ \textbf{0} \textcircled{\odot} \textbf{1} \textcircled{\odot} \textcircled{)} \\ \hline \\ enter \\ \hline \end{array}$	TABLE SETUP † Start=0 Step=1 Auto XE? GALC
Immettere ciascun valore supposto e premere enter.	$\begin{array}{c c} x & f(x) \\ 2 & 2700 \\ 7 & 450 \\ \hline 3 \\ x = 8 \end{array}$
Calcolare il valore di f(8) nella schermata iniziale. [2nd] [quit] [table]	EUNCTION 1:Add/Edit Func 20f(3:g(
2 Seleziona f(8)) [enter]	f(8) 0

La sovvenzione di \$450 al mese durerà 8 mesi in quanto y(8) = 3600 - 450(8) = 0 come mostrato nella tabella dei valori.

Problema

Trovare l'intersezione delle rette f(x)=-2x+5 e g(x)=x-4.

Le due rette si intersecano nel punto (x,y) = (3,-1).

Calcolo di espressioni

2nd [expr-eval]

Premere [2nd] [expr-eval]per immettere e calcolare un'espressione mediante numeri, funzioni e variabili/parametri. La pressione di [2nd] [expr-eval]da un'espressione della schermata iniziale incolla il contenuto in **Expr=**. Se il cursore è posizionato nella cronologia, l'espressione selezionata verrà incollata in **Expr=** quando si preme [2nd] [expr-eval]

Se nell'espressione si utilizzano le variabili x, y, z, t, a, b, c o d, verrà chiesto di immetterne i valori oppure utilizzare i valori memorizzati visualizzati per ogni richiesta. Il numero memorizzato nelle variabili si aggiornerà nella calcolatrice.

Costanti

Constants permette di accedere a costanti scientifiche da incollare in varie aree della TI-30X Pro MathPrint[™] calcolatrice. Premere [2nd] [constants]per accedere alla funzione e ④ oppure ④ per selezionare i menu NAMES o UNITS delle medesime 20 costanti fisiche. Utilizzare ④ e ④ per scorrere l'elenco delle costanti nei due menu. Il menu NAMES visualizza un nome abbreviato accanto al carattere della costante. Il menu UNITS contiene le stesse costanti del menu NAMES, ma vi sono visualizzate le unità di misura delle costanti.

Nota: I valori delle costanti visualizzati sono arrotondati. I valori utilizzati per i calcoli sono riportati nella seguente tabella (NIST 2018).

Costa	nte	Valore utilizzato per i calcoli
с	velocità della luce	299792458 metri al secondo
g	accelerazione gravitazionale	9,80665 metri al secondo ²
h	costante di Planck	6,62607015×10 ⁻³⁴ Joule secondi
NA	numero di Avogadro	6.02214076×10 ²³ molecole per mole
R	costante dei gas ideali	8,314462618 Joule per mole per Kelvin
m _e	massa dell'elettrone	9,1093837015×10 ⁻³¹ chilogrammi
т _р	massa del protone	1,67262192369×10 ⁻²⁷ chilogrammi
m _n	massa del neutrone	1,67492749804×10 ⁻²⁷ chilogrammi
\mathbf{m}_{μ}	massa del muone	1,883531627×10 ⁻²⁸ chilogrammi
G	costante di gravitazione universale	6,6743×10 ⁻¹¹ metri ³ per chilogrammo per secondi ²
F	costante di Faraday	96485,33212 Coulomb per mole
a ₀	raggio di Bohr	5,29177210903×10 ⁻¹¹ metri
r _e	raggio classico dell'elettrone	2,8179403262×10 ⁻¹⁵ metri
k	costante di Boltzmann	1,380649×10 ⁻²³ Joule per Kelvin
e	carica dell'elettrone	1.602176634×10 ⁻¹⁹ Coulomb
u	unità di massa atomica	1,6605390666×10 ⁻²⁷ chilogrammi
atm	atmosfera standard	101325 Pascal
6 3	costante dielettrica del vuoto	8,8541878128×10 ⁻¹² Farad al metro
μ 0	permeabilità del vuoto	1,25663706212×10 ⁻⁶ Newton per ampere ²
Cc	costante di Coulomb	8,987551792261×10 ⁹ metri per Farad

Numeri complessi

2nd [complex]

La calcolatrice esegue i seguenti calcoli con numeri complessi:

- Addizione, sottrazione, moltiplicazione e divisione
- Calcoli di argomento e valore assoluti
- Calcoli di reciproco, elevamento al quadrato ed elevamento al cubo
- Calcoli di numero coniugato complesso

Impostazione del formato complesso

Quando si eseguono calcoli con i numeri complessi, impostare la calcolatrice in modalità DEC.

mode \odot \odot \odot Seleziona il menu **REAL**. Utilizzare 0 e 0 per scorrere all'interno del menu **REAL** onde evidenziare il formato desiderato dei risultati complessi **a+bi** o **r** $\angle \theta$ e premere enter.

REAL, **a+bi** o $\mathbf{r} \angle \theta$ impostano il formato dei risultati con numeri complessi.

a+bi risultati con complessi espressi in coordinate rettangolari

 $\mathbf{r} \angle \boldsymbol{\theta}$ risultati complessi espressi in coordinate polari

Nota:

- I risultati complessi non vengono visualizzati salvo siano stati immessi numeri complessi.
- Per accedere a *i* sulla tastiera, utilizzare il tasto multifunzione π_i^e.
- Le variabili x, y, z, t, a, b, c e d sono numeri reali o complessi.
- I numeri complessi possono essere memorizzati.
- I numeri complessi non sono ammessi in data, matrix, vector e laddove gli argomenti complessi non sono validi. Una funzione può essere definita con un'espressione di numero complesso e verrà calcolata nella schermata iniziale e non in una tabella.
- Per conj(, real(e imag(, l'argomento può essere in formato rettangolare oppure in formato polare. Il risultato per conj(è determinato dall'impostazione della modalità.
- Il risultati per real(e imag(sono numeri reali.
- Impostare la modalità a DEGREE o RADIAN a seconda dell'unità di misura dell'angolo necessaria.

Menu Complex	Descrizione
1:∠	∠ (carattere angolo coordinate polari)
	Permette di incollare la rappresentazione in coordinate polari di un numero complesso (come $5 \angle \pi$).

Menu Complex	Descrizione
2:polar angle	Restituisce l'angolo della rappresentazione in coordinate polari di un numero complesso.
	Sintassi: angle(valore)
3:magnitude	Restituisce il modulo (valore assoluto) di un numero complesso.
	Sintassi: abs(<i>valore</i>) (o □ in modalità MathPrint™)
4:) r∠θ	Visualizza un risultato complesso in formato polare. Valido solo alla fine di un'espressione.
5:▶a+bi	Visualizza un risultato complesso in formato rettangolare. Valido solo alla fine di un'espressione.
6:conjugate	Restituisce il coniugato di un numero complesso. Sintassi: conj(<i>valore</i>)
7:real	Restituisce la parte reale di un numero complesso. Sintassi: real(<i>valore</i>)
8:imaginary	Restituisce la parte immaginaria (non reale) di un numero complesso.
	Sintassi: imag(valore)

Esempi (impostare la modalità a RADIAN)

Carattere angolo polare: ∠	Clear 5 [2nd] [complex] enter π_i^{e} $\overline{\mathbb{B}}$ 2 [enter]	$5 \angle \frac{\pi}{2}$ 5i
Angolo polare: angle($ \begin{array}{c} \hline \text{clear} & 2nd & [complex] \\ \hline \hline \\ \hline \\ enter & 3 + 4 \\ \hline \pi \frac{r}{j} & \pi \frac{r}{j} & \pi \frac{r}{j} \\ \hline \end{array} $	an9le(3+4i) 0.927295218
Modulo: abs($\begin{array}{c} \hline \text{Clear} & 2nd & [\text{complex}] 3 \\ \hline (& 3 + 4 & \overline{\pi}_{i}^{e} & \overline{\pi}_{i}^{e} \\ \hline \pi_{i}^{e} &) & \text{enter} \end{array}$	(3+4i) ^{FRD} 5
▶r∠θ	Clear 3 $+$ 4 π_i^{e} π_i^{e} π_i^{e} 2nd [complex] 4 enter	3+4i⊧r∠0 5∠0.927295218

▶a+bi	Clear 5 [2nd] [complex][enter] 3 (\overline{T}_{i}) (\overline{T}_{i}) 2 (\vee) 2nd [complex] 5 [enter]	5∠ 3π)a+bi	-5i
Coniugato: conj(Clear 2nd [complex] 6 5 - 6 π_i° π_i° π_i°) enter	conj(5-6i)®	5+6i
Parte reale: real(clear 2nd [complex] 7 5 - 6 π_i^{e} π_i^{e} π_i^{e}) enter	real(5-6i)®	Ĵ

Informazioni di riferimento

La presente sezione contiene informazioni relative a errori, manutenzione e sostituzione delle pile e diagnosi e risoluzione dei problemi.

Errori e messaggi

Quando la calcolatrice rileva un errore, la schermata visualizza il tipo di errore oppure un messaggio.

- Per correggere un errore: Premere dear per cancellare il messaggio di errore. Il cursore verrà visualizzato in corrispondenza o in prossimità dell'errore. Correggere l'espressione.
- Per chiudere la schermata di errore senza correggere l'espressione: Premere 2nd [quit] per tornare alla schermata iniziale.

Il seguente elenco comprende alcuni degli errori e messaggi che si possono incontrare.

Errore/Messaggio	Descrizione
Argument	 Questo errore viene restituito quando: una funzione non ha il numero corretto di argomenti il limite inferiore è maggiore del limite superiore in una funzione di sommatoria o produttoria
Bad Guess	Questo errore viene restituito quando l'immissione di variabile per la variabile "solve for" in Risolutore numerico è all'esterno dei limiti inferiore e superiore immessi.
Bounds: Enter LOWER ≤ UPPER	Questo errore viene restituito quando l'immissione per limite inferiore > limite superiore per: • la distribuzione Normalcdf • Limiti della soluzione di Risolutore numerico
Break	Questo errore viene restituito quando si preme il tasto on per interrompere il calcolo di un'espressione.
Calculate 1-Var,2-Var Stat or a regression.	Questo messaggio viene restituito quando non è stato memorizzato nessun calcolo statistico o di regressione.
Change mode to DEC.	Questo errore viene restituito quando la modalità è impostata a BIN, HEX o OCT e si accede alle seguenti applicazioni: [expr-eval]table [convert] [stat-reg/distr] [data [num-solv]poly-solv][sys-solv][matrix] [vector]

Errore/Messaggio	Descrizione
	Queste applicazioni sono disponibili soltanto in modalità DEC.
Dimension mismatch	Questo errore viene restituito se le dimensioni di una matrice o di un vettore in un calcolo non sono corrette per l'operazione.
Division by 0	Questo errore viene restituito se il calcolo dell'espressione contiene una divisione per 0.
Domain	Questo errore viene restituito quando un argomento non rientra nel dominio della funzione. Ad esempio: • Per $x\sqrt{y}$: x = 0 - oppure – y < 0 e x non è un numero intero dispari. • Per y^x : $y e x = 0$. • Per \sqrt{x} : $x < 0$. • Per log, ln o logBASE: $x \le 0$. • Per tan: $x = 90^\circ$, -90° , 270° , -270° , 450° , ecc. e valore equivalente per la modalità in radianti. • Per sin-1 o cos-1: $ x > 1$. • Per nCr o nPr: $n \circ r$ non sono numeri interi
	 ≥ 0. Per x!: x non è un numero intero tra 0 e 69.
Enter 0≤area≤1	Questo errore viene restituito quando si immette un valore di area non valido in invNormal per una distribuzione.
Enter sigma>0	Questo errore viene restituito quando l'immissione per sigma in una distribuzione non è valida.
Expression is too long	Questo errore viene restituito quando un'immissione supera i limiti del numero di cifre. Per esempio, incollando un'immissione di espressione con una costante che supera il limite. Un cursore scacchiera può essere visualizzato quando vengono raggiunti i limiti in ciascuna funzione MathPrint™.
Formula	Questo errore viene restituito in data quando:

Errore/Messaggio	Descrizione
	 la formula non contiene un nome di lista (L1, L2 o L3)
	 la formula per una lista contiene il proprio nome di lista
	Per esempio, una formula per L1 contiene L1.
Frequency: Enter FREQ≥0	Questo errore viene restituito quando almeno un elemento in una lista selezionato per $FREQ$ è un numero reale negativo in 1-VAR o 2-VAR STATS .
Highest degree coefficient cannot be zero.	Questo errore viene restituito quando il coefficiente, a, nel calcolo del risolutore polinomiale è preinserito zero o se l'immissione per a è zero. Change to a non- zero value.
Input must be non-negative Integer.	Questo errore viene restituito quando un'immissione non è il tipo di numero previsto. Per esempio, negli argomenti di una distribuzione $TRIALS$ e x in Binomialpdf.
Input must be Real	Questo errore viene restituito quando un'immissione richiede un numero reale.
Invalid data type	Questo errore viene restituito quando l'argomento di un comando o di una funzione non è corretto.
	Per esempio, l'errore verrà visualizzato per sin (i) o min(i,7) in cui gli argomenti devono essere numeri reali.
Invalid Dimension	Questo errore viene visualizzato quando un'operazione matriciale o vettoriale non può essere eseguita a causa delle dimensioni errate.
Invalid equation	Questo errore viene restituito quando viene immessa un'equazione non valida come 1000=10000 o un'equazione vuota nel risolutore numerico.
Invalid function	Questo errore viene restituito se non è definita nessuna funzione e viene tentato un calcolo di funzione. Definire le funzioni in table.
List Dimension	Questo errore viene restituito quando in data :
1≤dim(list)≤50	 viene eseguita la funzione SUM LIST su una lista vuota
	 viene creata una sequenza con lunghezza 0 oppure >50.

Errore/Messaggio	Descrizione
Max iterations reached. Try new guess.	Questo errore viene restituito quando il risolutore di equazioni numeriche ha superato il numero massimo di iterazioni consentite per trovare una soluzione. Cambiare l'ipotesi iniziale per la variabile della soluzione o controllare l'equazione.
Mean: Enter mu>0	Questo errore viene restituito quando viene immesso un numero non valido per la media ($media = mu$) in poissonpdf o poissoncdf.
Memory limit reached	Questo errore viene restituito quando un calcolo contiene un riferimento circolare come nel caso di due funzioni che fanno riferimento l'una all'altra o di un calcolo molto lungo.
No sign change found. Try new guess.	Questo errore viene restituito quando l'algoritmo del risolutore numerico non riesce a trovare una soluzione. Cambiare l'ipotesi iniziale per la variabile della soluzione o controllare l'equazione.
	Le equazioni con radici ripetute, come x^2=0, non hanno un cambio di segno intorno alla radice che è essenziale perché l'algoritmo del risolutore numerico effettui iterazioni fino all'ottenimento di una soluzione.
[2nd] [set op]: Operation is not defined.	Questo errore viene restituito quando non è stata definita un'operazione in 2nd [set op] e si preme 2nd [op].
Operation set! [2nd] [op] pastes to Home Screen.	Questo messaggio viene restituito quando un'operazione viene memorizzata (impostata) da 2nd [set op] editor. Premere un tasto qualsiasi per continuare.
Overflow	Questo errore viene restituito quando un calcolo o un valore fuoriesce dalla gamma consentita della calcolatrice.
Probability: Enter 0≤p≤1	Questo errore viene restituito quando l'immissione per la probabilità nelle distribuzioni non è valida.
Singular matrix	Questo errore viene restituito quando si prova a invertire una matrice singolare. Una matrice singolare ha determinante = 0.
Singularity	Questo errore viene restituito quando l'algoritmo del risolutore numerico non riesce a restituire una soluzione a causa di un in cui la funzione non è definita.

Errore/Messaggio	Descrizione
Statistics	Questo errore viene restituito quando una funzione statistica o di regressione non è valida.
	Per esempio, quando si tenta un calcolo di 1- var o 2-var stats senza alcun punto dati definito.
Step size must not be 0.	Questo errore viene restituito quando in data, l'immissione STEP SIZE è impostata a 0 nella funzione SEQUENCE FILL.
Syntax	Questo errore viene restituito quando un'espressione contiene funzioni, argomenti, parentesi o virgole posizionati in modo errato.
Tolerance not met	Questo errore viene restituito quando l'argomento della tolleranza, come nel caso di una differenziazione numerica o integrazione numerica, è tale per cui l'algoritmo non può restituire un risultato accurato.
TRIALS: Enter 0≤n≤49	Questo errore viene restituito in Binomialpdf e Binomialcdf quando il numero di prove è fuori gamma, 0≤n≤49 nel caso di ALL.
Undefined	Questo errore viene restituito quando una matrice o un vettore non sono definiti. Definire la matrice o il vettore nel menu [matrix] o [vector] EDIT.

Informazioni sulle pile

Attenzione alla batteria:

- Non ingerire la batteria, pericolo di ustioni chimiche.
- Questo prodotto contiene una pila a bottone o a bottone. Se la batteria a bottone o a moneta viene ingerita, può causare gravi ustioni interne in sole 2 ore e può portare alla morte.
- Tenere le batterie nuove e usate lontano dalla portata dei bambini.
- Fissare sempre completamente il vano batteria. Se il vano batterie non si chiude in modo sicuro, interrompere l'uso del prodotto, rimuovere le batterie e tenerle lontane dalla portata dei bambini.
- Se si ritiene che le batterie possano essere state ingerite o posizionate all'interno di qualsiasi parte del corpo, rivolgersi immediatamente a un medico.
- Per informazioni sul trattamento, contattare un centro di controllo antiveleni locale.
- Anche le batterie usate possono causare lesioni gravi o mortali.
- Le batterie non ricaricabili non devono essere ricaricate.

- Non forzare lo scarico, la ricarica, lo smontaggio, il riscaldamento a temperature superiori a 140F (60C) o l'incenerimento. In caso contrario, si potrebbero causare lesioni dovute a fuoriuscite, perdite o esplosioni con conseguenti ustioni chimiche.
- Assicurarsi che le batterie siano installate correttamente in base alla polarità (+ e -).
- Non mischiare batterie vecchie e nuove, di marche o tipi diversi di batterie, come batterie alcaline, zinco-carbone o ricaricabili.
- Rischio di incendio o esplosione se la batteria viene sostituita con un tipo non corretto.
- Rimuovere e riciclare o smaltire immediatamente le batterie da apparecchiature non utilizzate per un periodo di tempo prolungato in conformità alle normative locali. NON smaltire le batterie nei rifiuti domestici o incenerirle.

Rimozione o sostituzione delle pile

La TI-30X Pro MathPrint[™] calcolatrice utilizza due pile CR2032 da 3 V.

- Rimuovere il coperchio di protezione e ruotare la calcolatrice in modo da rivolgere il frontalino in basso.
- Con un piccolo cacciavite, rimuovere le viti dal retro del contenitore.
- A partire dal fondo, separare con cautela la parte frontale da quella posteriore. Fare attenzione a non danneggiare nessuna delle parti interne.
- Con un piccolo cacciavite, rimuovere la vite sul fermaglio delle pile e togliere le pile.

 Per sostituire le pile, verificare la polarità (+ e -) e inserire le batterie nuove. Premere con decisione per fare scattare le pile in sede e rimontare la vite nel fermaglio delle pile.

Importante: Quando si sostituiscono le pile, evitare qualsiasi contatto con gli altri componenti della calcolatrice.

Smaltire le pile esaurite immediatamente e in conformità alla normativa locale vigente.

A norma del regolamento CA Regulation 22 CCR 67384.4, alle pile a bottone presenti in questo apparecchio si applica quanto segue:

Materiale contenente perclorati: possono applicarsi trattamenti speciali.

Vedere: www.dtsc.ca.gov/hazardouswaste/perchlorate

In caso di difficoltà

Rileggere le istruzioni per essere certi che i calcoli siano stati eseguiti correttamente.

Controllare le pile per accertare che siano cariche e montate correttamente.

Cambiare le pile quando:

- premendo il tasto on la calcolatrice non si accende oppure
- lo schermo si disattiva oppure
- si ottengono risultati imprevisti.

Informazioni di carattere generale

Assistenza on line

education.ti.com/eguide

Selezionare il proprio Paese per ulteriori informazioni sul prodotto.

Per contattare il supporto TI

education.ti.com/ti-cares

Selezionare il proprio Paese per le risorse di supporto tecnico e di altro tipo.

Informazioni su assistenza e garanzia

education.ti.com/warranty

Selezionare il proprio Paese per informazioni sulla durata e sui termini della garanzia o sull'assistenza ai prodotti.

Garanzia limitata. La presente garanzia non pregiudica i diritti spettanti per legge.

Texas Instruments Incorporated

12500 TI Blvd.

Dallas, TX 75243